
Smile Reference Manual

Satimage-software

http://www.satimage-software.com
Copyright c© 2003 Satimage (France)

May 1st, 2003

Contents

I Smile, the better script editor for AppleScript 11

1 About Smile Reference Manual 12
1.1 How Smile’s documentation is organized . 12

1.1.1 The text files included in the distribution . 12
1.1.2 Smile’s on-line help menu . 12
1.1.3 The resources available on the Web . 13

1.2 The scope of Smile Reference Manual . 13
1.3 Conventions used in Smile Reference Manual . 13
1.4 What you should read . 14
1.5 Reference Manual Change History . 14

2 An introduction to Smile 15
2.1 Overview . 15
2.2 To get started quickly ... 15
2.3 Short features list . 15

3 Installation 17
3.1 What you should install . 17
3.2 Installing Smile from scratch . 18
3.3 Installing a new release . 18

3.3.1 Full install . 18
3.3.2 Partial upgrade . 18

3.4 Installing the Satimage osax . 19
3.4.1 First install of the Satimage osax . 19
3.4.2 Installing an upgrade of the Satimage osax 19

3.5 Installing additional components . 19
3.6 Multiple users support . 19

2

CONTENTS 3

4 Entering the world of Smile: scripting and debuging in text windows 21
4.1 Smile, a different experience of scripting . 21
4.2 Scripting and debug in text windows . 21

4.2.1 Making a new text window . 21
4.2.2 Executing scripts in text windows . 21
4.2.3 Displaying the result of execution . 22
4.2.4 The scope of the variables — Smile’s context 22

5 Working with scripts in script windows 24
5.1 About script documents formats . 24
5.2 Making a new script window . 24
5.3 Opening a script document . 25
5.4 Working with a script window . 25
5.5 Editing an applet or a droplet . 26
5.6 Saving a script document . 26
5.7 Saving an applet or a droplet . 27
5.8 Saving a script without its source . 27

6 Editing text in text windows 28
6.1 About text documents formats . 28

6.1.1 Unicode support . 28
6.1.2 ISO-8859-1 support . 28

6.2 Making a new text window . 28
6.3 Opening a text document . 29
6.4 Closing a text window . 29
6.5 Saving a text window . 29
6.6 Using drag and drop in text windows . 29
6.7 Editing text . 30
6.8 Selection keyboard shortcuts — Mouse tricks . 31
6.9 Text searches . 31

7 Using the dictionaries 33
7.1 Searching a term’s definition . 33
7.2 Opening the dictionary of an application — Opening the dictionary of a Scripting

Addition . 33
7.3 Opening the dictionary of an application which is running — Opening the dictionary

of a Scripting Addition which is installed . 34
7.4 Opening the dictionary of the target application of a window 34
7.5 Opening AppleScript’s dictionary . 34

4 CONTENTS

8 Scripting faster with the “Balance” command 35
8.1 Syntax pre-typing . 35
8.2 Parentheses balancing . 35
8.3 Wrappers balancing . 36
8.4 “Balance()” call to your script . 36

9 The Scripts menu 37
9.1 How to use the “Scripts” menu . 37
9.2 Adding and removing menu items to/from the “Scripts” menu 38
9.3 Displaying hierarchical menus in the “Scripts” menu 38
9.4 Grouping items in the “Scripts” menu . 38
9.5 Using aliases in the “Scripts” menu . 39
9.6 Sorting the items of the “Scripts” menu . 39
9.7 Providing shortcuts to the items of the “Scripts” menu 39

10 Connecting a window to an application — The “tell ...” feature 41
10.1 When to connect a window to an application . 41
10.2 How to connect a window to an application . 41
10.3 Making scripts into “raw code” . 41
10.4 Targeting an application by script . 42
10.5 The context of a window connected to an application 42
10.6 “Find definition” in a window connected to an application 42
10.7 Known bugs . 42

11 Comfort and productivity 43
11.1 The Worksheet . 43
11.2 Handling windows efficiently . 43
11.3 The “Recent files” menu . 44
11.4 The “Favorites” menu . 44
11.5 Preferences . 44

11.5.1 The “General” pane . 44
11.5.2 The “AppleScript” pane . 45
11.5.3 The “Windows” pane . 46

11.6 Programmer’s tools . 46
11.7 Variables that are saved when you quit Smile . 47

II The AppleScript-based automation engine 49

12 Advanced text editing 50

CONTENTS 5

12.1 Advanced text searches . 50
12.1.1 The Enhanced Find panel . 50
12.1.2 Searching in folders . 50
12.1.3 Regular expressions . 50

12.2 Comparing files . 51
12.3 Text tools . 51

12.3.1 Make an AppleScript string . 51
12.3.2 ISO-Latin1 to Mac and Mac to ISO-Latin1 51
12.3.3 Open ISO-Latin1 ... 51
12.3.4 Measure Text . 52
12.3.5 Sort paragraphs . 52

13 The scriptable text editor — The Text Suite 53
13.1 Specifying a text range in a window of Smile . 53
13.2 whose, where and every . 54
13.3 before and after . 54
13.4 The properties of the text . 54

14 The UTF-16 editor 55
14.1 Overview . 55
14.2 Using the UTF-16 editor . 55

15 Smile custom dialogs 56
15.1 Overview . 56
15.2 Running a custom dialog . 56
15.3 Running a custom dialog by script . 56
15.4 The basics of custom dialogs . 57
15.5 Creating your own custom dialogs . 57

15.5.1 Making a new custom dialog . 57
15.5.2 Populating a new custom dialog . 57

15.6 Editing a custom dialog . 58
15.6.1 The edit mode . 58
15.6.2 Dialog editing features . 59
15.6.3 The dialog editing tools . 59

15.7 Scripting a custom dialog . 60
15.7.1 The basic properties of the controls . 60
15.7.2 Events received by the scripts . 61

15.8 Making a custom dialog multi-lingual . 64
15.8.1 What is localization? . 64
15.8.2 How to localize a dialog . 64

6 CONTENTS

15.8.3 How to localize Smile . 66
15.8.4 How to localize “Localize” . 66

15.9 Making a custom dialog into a stand-alone application 66
15.9.1 Why to make a custom dialog into a stand-alone application 66
15.9.2 Why not to make a custom dialog into a stand-alone application 66
15.9.3 The limits of a stand-alone application . 67
15.9.4 Making a stand-alone application . 67

15.10Attaching a custom dialog to an object . 67

16 Scripting Smile — The basics 69
16.1 Overview . 69
16.2 Manipulating objects — The object model . 69

16.2.1 Accessing an object . 69
16.2.2 Making a new object by script . 70

16.3 Programming the objects — The object scripts . 70
16.3.1 Introduction to object scripts . 70
16.3.2 How to write object scripts . 71
16.3.3 How to send commands to an object script 73
16.3.4 The object script, a better script object . 73

16.4 Opening a file by script . 74
16.5 Providing a GUI — The Smile dialogs . 74
16.6 Scheduling tasks . 74

17 Scripting Smile — Advanced features 75
17.1 Overview . 75
17.2 Making and editing scripts by script . 75
17.3 The Class scripts — Defining new classes . 76

17.3.1 An introduction to class scripts . 76
17.3.2 Creating custom classes . 76

18 About Smile’s libraries 78
18.1 Overview . 78
18.2 Documentation about Smile’s libraries . 78

19 General purpose library 80
19.1 Strings . 80
19.2 Lists and records . 83
19.3 Files and resources . 84
19.4 Scripts . 85
19.5 User interaction . 85

CONTENTS 7

20 Mathematical library 88
20.1 Functions . 88
20.2 Lists and arrays of numbers . 89

21 RS232 library 91
21.1 Overview . 91
21.2 Instructions of use . 91

22 Digital I/O library 93
22.1 Overview . 93
22.2 Instructions of use . 93

23 PDF library — The Graphic Kernel 94
23.1 Overview . 94
23.2 Producing a graphic in a window . 94

23.2.1 The basics . 94
23.2.2 The graphic window . 95
23.2.3 The graphical objects . 95

23.3 The basics of the PDF language . 95
23.3.1 The paths . 95
23.3.2 The Graphic State . 96

23.4 The graphic commands . 96
23.5 Producing PDF data . 96

23.5.1 The basics . 96
23.5.2 Producing a PDF file . 97
23.5.3 Appending PDF to a PDF file . 97
23.5.4 Setting the background or the foreground picture of a SmileLab plot 97
23.5.5 Displaying an animation in a graphic window 98
23.5.6 Displaying graphics in a picture view . 98
23.5.7 Displaying animated graphics with picture views 98
23.5.8 Displaying graphics in a custom dialog . 99

23.6 Additional information and examples . 99
23.6.1 How Smile’s PDF engine really works . 99
23.6.2 Additional resources . 100

24 Smile’s folders 102
24.1 The roles of Smile’s folders . 102
24.2 Where Smile locates its folders . 103

8 CONTENTS

25 If you are curious about Smile 105
25.1 The history of Smile . 105
25.2 The philosophy of Smile . 105
25.3 Why Smile is free . 105

III Appendices 107

A Satimage regular expressions 108
A.1 Overview . 108
A.2 Defining a search pattern . 108

A.2.1 Metacharacters and “escape” character . 109
A.2.2 Anchors . 109
A.2.3 Character classes . 109
A.2.4 Operators . 110
A.2.5 Flags . 111

A.3 Defining a replace pattern . 112

B Portability and raw codes 113
B.1 What portability is about . 113
B.2 Referring to applications by creator code . 113
B.3 Why to use raw codes . 114
B.4 How to get the raw codes . 114

C The components for custom dialogs 116
C.1 Push Button . 116
C.2 Static Text Box . 116
C.3 Editable Text Box . 117
C.4 Password Text Box . 117
C.5 Popup Menu Button . 118
C.6 Slider . 118
C.7 Little Arrows . 118
C.8 Radio Button . 118
C.9 Check Box . 118
C.10 Time Clock . 118
C.11 Date Clock . 119
C.12 Progress Indicator . 119
C.13 Chasing Arrows . 119
C.14 Visual Separator . 119
C.15 Disclosure Triangle . 119

CONTENTS 9

C.16 PDF Holder . 119
C.17 Icon Control . 120
C.18 Image Well . 120
C.19 Bevel Button . 121
C.20 List Box . 121
C.21 Menu Group Box . 121
C.22 Group Box . 121
C.23 Tabs Holder . 121

D The dictionary of Smile 123
D.1 Smile . 123
D.2 Misc . 127
D.3 Satimage utilities . 128
D.4 Smile drawings Suite . 129
D.5 SmileLab Suite . 130

E The dictionary of the Satimage osax 135
E.1 Satimage text Additions . 135
E.2 Satimage files Additions . 137
E.3 Satimage utilities Suite . 138
E.4 Resource Suite . 139
E.5 Math . 140

F Built-in routines 145
F.1 Handlers which display text . 145
F.2 Handlers which sort lists . 146
F.3 Miscellaneous helpers . 146
F.4 Handlers which open files . 147
F.5 Handlers which help manipulating Smile objects . 147

G Reference of the PDF commands 149
G.1 Overview . 149
G.2 Graphic state . 149

G.2.1 Handling States . 149
G.2.2 Stroke and Fill Settings . 149
G.2.3 Applying transformations . 150

G.3 Paths . 150
G.3.1 Operations on paths . 150
G.3.2 Building paths . 150

G.4 Text . 151

10 CONTENTS

G.4.1 Text styles . 151
G.4.2 Drawing Text . 152

G.5 2D geometry . 152

H GeomLib, a graphical library for 2D geometry 153
H.1 Text Utilities . 153
H.2 Marking . 154

H.2.1 Marking Angles . 154
H.2.2 Marking Points . 154
H.2.3 Arrows . 155

H.3 Basic Geometry . 155
H.4 Basic Geometric Figures . 155

Part I

Smile, the better script editor for
AppleScript

11

Chapter 1

About Smile Reference Manual

1.1 How Smile’s documenta-
tion is organized

The documentation about Smile comes in three
forms: as text files included in the distribution,
as a Help Viewer module available from Smile,
and as resources available via the World Wide
Web.

1.1.1 The text files included in the
distribution

When you first download Smile, you find in the
distribution two documentation files, which will
open in TextEdit if double-clicked: the Read Me
and the Release notes files.

• The Read Me file
The Read Me file located in Smile’s folder
contains:

– a summarized information about Smile

– the basic installation procedure

– release information that users should
be aware of, even if already familiar
with Smile, e.g. important changes

– URL’s for further downloads, for ad-
ditional information, for feedback, for
support, and for licensing information.

• The Release Notes file
The Release Notes file provides a summary
of the release information concerning the
particular version downloaded and the pre-
vious versions. It does not include infor-
mation about minor fixes or improvements,
nor about features which concern only ex-
pert users.

1.1.2 Smile’s on-line help menu

Smile’s Help menu has several items: the main
Smile help item, and several other items named
the help files.

• On-line Smile help
Selecting the Smile help menu will launch
Smile’s Help Viewer module. Smile help is
where the user not yet familiar with Smile
will find the basic information about Smile’s
fundamentals and about how to use Smile.

– one chapter describes the basics:
scripting in script windows and debug-
ing in text windows

12

1.2. THE SCOPE OF SMILE REFERENCE MANUAL 13

– one chapter is devoted to the helpful
features that Smile offers to scripters

– quickly documented are the enhance-
ments to AppleScript that Smile offers,
and the use of Smile as a Graphical
User Interface editor.

• On-line help files
The Help menu displays the files in the More
stuff:Documentation folder: you can add
your own. These additional files provide a
quick help about some advanced features of
Smile.

1.1.3 The resources available on the
Web

You will find still more information if you
connect your web browser to Satimage-
software’s World Wide Web site at www.satimage-
software.com:

• Smile’s official home page
URL: http://www.satimage-software.com/en/-
softx.html#smile
Latest breaking news about Smile.

Smile’s official home page provides links to
all resources about Smile.

• Smile Release Notes
URL: http://www.satimage-software.com/en/-
releasesmilex.html
Up-to-date exhaustive history of the full re-
lease notes, detailing all bug fixes and new
features.

• Smile Reference Manual
URL: http://www.satimage-software.com/-
downloads/RefMan en may03.pdf
The exhaustive manual which contains all

information regarding all the aspects of
Smile.

1.2 The scope of Smile Refer-
ence Manual

Smile Reference Manual presents all aspects of
Smile. This includes features that the minimal
installation of Smile may not include and
features that may require a specific registration.
Section 3.1 explains where the various compo-
nents of Smile may be found.

Smile Reference Manual addresses Smile for
MacOS X. There is no such document about
Smile for MacOS 8/9. Information given here
may or may not apply to Smile for MacOS 8/9.

1.3 Conventions used in Smile
Reference Manual

The present manual uses the following conven-
tions:

• file paths use the UNIX convention: direc-
tories are separated with the slash / rather
than with the colon : like in AppleScript.
Example:
Store libraries in the Class Scripts/Context
additions/ directory.

• file names, folder names and paths are
printed in italics.
Example:
Library/Application Support/Smile/

• menus and boutons are printed using a sans
serif font.
Example:
the Save item of the File menu

http://www.satimage-software.com
http://www.satimage-software.com
http://www.satimage-software.com/en/softx.html#smile
http://www.satimage-software.com/en/softx.html#smile
http://www.satimage-software.com/en/releasesmilex.html
http://www.satimage-software.com/en/releasesmilex.html
http://www.satimage-software.com/downloads/RefMan_en_may03.pdf
http://www.satimage-software.com/downloads/RefMan_en_may03.pdf

14 CHAPTER 1. ABOUT SMILE REFERENCE MANUAL

• examples of scripts are printed using the
typewriter font.
Example:
tell application "Finder" to get
window 1

• keys of the keyboard are printed in slanted
style.
Example:
Press apple-shift-C

• if you are viewing Smile Reference Manual
with Acrobat Reader, the hypertext links
are printed in purple.
Example:
See chapter 4.

• if you are viewing Smile Reference Manual
with Acrobat Reader, the links to web ad-
dresses are printed in dark blue .
Example:
Visit AppleScript home page.

The manual includes hypertext links. You may
require Acrobat or Acrobat Reader in order to
have the hypertext links working.

1.4 What you should read

Smile Reference Manual is divided into thematic
chapters. Each chapter covers one given issue in
as self-consistent a fashion as possible. Depend-
ing on your current personal knowledge, and on
what kind of information you are seeking, you
will want to read one or several particular sec-
tions or chapters.
In all cases it is best that you be familiar with
the concept described in Chapter 4, the use of
Text windows as an AppleScript Terminal.

1.5 Reference Manual Change
History

• May 1st, 2003: first public release of the
Smile Reference Manual. Version number:
en may03. The en may03 version of the
Smile Reference Manual is in English and is
up to date with the 2.5.2 release of Smile for
OS X. Partial revision by Charles Ross.

• May 4th, 2003: for convenience, uploaded
two versions of the Reference Manual on the
Internet: RefMan en may03.pdf, 223 pages,
and RefMan en may03xs.pdf, same contents
in 155 pages.

• May 6th, 2003: provided additional instruc-
tions about the mark keyword.

• May 7th, 2003: provided additional instruc-
tions about the Regular Expressions flags
and about how to open the Worksheet. Page
numbers in top of the pages, no longer in
footer.

http://www.apple.com/applescript
http://www.satimage-software.com/downloads/RefMan_en_may03.pdf
http://www.satimage-software.com/downloads/RefMan_en_may03xs.pdf

Chapter 2

An introduction to Smile

2.1 Overview

Smile is an environment which uses all the hid-
den power of AppleScript to offer an automation
center for controlling your machine, in a spirit of
comfort and efficiency.
To this effect, Smile includes a script editor for
AppleScript that is more ambitious than Apple’s
Script Editor. In particular, Smile includes an
editor of graphical User Interfaces.
Furthermore Smile offers various libraries includ-
ing mathematical libraries, a pdf generation li-
brary, libraries for performing serial and digital
I/O, and the SmileLab library, an environment
for plotting numerical data interactively.

2.2 To get started quickly ...

Smile provides on line information that you will
require to get started. If no particular problem
occurs, you should be able to take the following
steps:

• download the latest Smile package

• expand it

• open the Read Me file located at the first
level of the package

• install Smile following the instructions pro-
vided in the Read Me file

• launch Smile

• select “Smile Help” in the Help menu

you will get sufficient help to get you started.

2.3 Short features list

As of its version 2.5.2, Smile includes the follow-
ing features:

1. a script editor for AppleScript

2. a persistent shell environment for Apple-
Script

3. an editor and runtime environment for
scripted custom Aqua graphic interfaces

4. a scriptable styled text editor

5. a Unicode editor supporting in-line input

6. a library for creating and manipulating pdf
graphics programmatically

7. a library for math which includes commands
for fast processing of large arrays of real
numbers

15

16 CHAPTER 2. AN INTRODUCTION TO SMILE

Figure 2.1: Using Smile’s graphical user inter-
face editor you design virtually any utility in few
minutes.

8. a library for graphical (2D and 3D) repre-
sentation of numerical data (pay features of
SmileLab)

9. a library to drive RS232/422 serial ports via
the Keyspan Twin USB/Serial Adapter

10. a library to handle digital I/O via the Del-
com digital IO Development Board

11. a library with all-purpose commands which
enrich the basic AppleScript

Chapter 3

Installation

Each release, upgrade or component of Smile
comes as a compressed archive, and it should
include a Read Me file which contains the
instructions required to install it.

3.1 What you should install

The Smile download is a minimal install. De-
pending on what you intend to do with Smile
you may need additional components. Here is
what you have to install.

Smile’s folder When you download the latest
version of Smile, you get one folder, the
Smile folder. Once you install that folder,
Smile is fully functional: its double-clickable
icon is inside that folder. However, not all
of the features documented in the present
manual will be available and you may have
to install additional resources as described
below.

Satimage osax The Satimage osax (“osax”
means Scripting Addition, in other words
an extension to the basic AppleScript) con-
tains a number of commands that you may
want to use from your scripts or applets:

for details see section 18.1. The very ba-
sic operation of Smile does not require the
Satimage osax.

Optional “user scripts” Smile supports a
customizable menu, the Scripts menu — the
menu with the script icon — that the Chap-
ter 9 describes in all details. The More User
Scripts folder located in the Smile Extras
folder contains additional items that you
can optionally install in the Scripts menu.
To install a given command or a set of com-
mands, copy the corresponding file or folder
into the User Scripts folder.

Other additions Still more user scripts, and
possibly other kinds of extensions to Smile,
can be found on the web site of Satimage-
software. Those are sometimes named
the “Goodies” for Smile. A link to the
download page for the Goodies is supplied
on Smile’s official home page
http://www.satimage-software.com/en/-
softx.html#smile

17

http://www.satimage-software.com/en/softx.html#smile
http://www.satimage-software.com/en/softx.html#smile

18 CHAPTER 3. INSTALLATION

3.2 Installing Smile from
scratch

Smile comes as a compressed self-mounting
disk image, whose name is in the form
Smilexyz.dmg.gz (e.g. Smile252.dmg.gz). The
.gz suffix means that the file was compressed
using gzip. Most probably, your Web browser
will automatically expand the .gz file.

Please note: before you download
Smilexyz.dmg.gz, make sure that an expanded
file Smilexyz.dmg does not already exist in the
location where the new file will expand.

Once the file expanded into the Smilexyz.dmg
disk image, an installation volume Smilexyz
may mount. If it does not, double-click the
Smilexyz.dmg file to mount the installation
volume. Double-click the icon of the installation
volume: it contains the Smile folder. Do not
attempt to run Smile, nor to open any file, from
the installation volume.
Install Smile by copying the Smile folder from
the installation volume into your Applications
folder. The Smile folder contains the double-
clickable icon of the Smile application.

Please note: before moving or renaming the
Smile application, or any of the folders located
at the same level, or any of its container folders
and volume, quit Smile.

3.3 Installing a new release

Smile upgrades come either as a full install or
as separate files (i.e., new versions of existing
files and/or new files) which should be copied
individually to their proper respective locations.

3.3.1 Full install

If you have deleted files from, added files to, or
modified files in the User Scripts folder which is
located in the Applications folder, you should at
first make a copy of the User Scripts folder and
place it outside of your current Smile folder.

Copy the new Smile folder into the Appli-
cations folder of your startup disk, then (if it
applies) copy your personal scripts from the
copy of your User Scripts folder into the new
User Scripts folder.

We recommend that you move the older Smile
application to the trash and that you empty the
trash. When releasing a new version of Smile,
the previous working version remains available
for download — possibly without a link to it
however. The URL for a given version x.y.z of
Smile is:
http://www.satimage-software.com/downloads/-
Smilexyz.dmg.gz

3.3.2 Partial upgrade

The location to install the files of the upgrades
is described in the Read Me file which ships
with the ugrade.

The locations where you may have to install
such files are particular folders inside the Smile
folder. See section 24 for more details regarding
what roles those folders play, and where they
are located.

It is required that you relaunch Smile after
having installed files in the following cases:

http://www.satimage-software.com/downloads/Smilexyz.dmg.gz
http://www.satimage-software.com/downloads/Smilexyz.dmg.gz

3.5. INSTALLING ADDITIONAL COMPONENTS 19

• (you are installing a new version of the ap-
plication itself)

• you install a file in the Class Scripts folder

• you install a file in the Context additions
folder of the Class Scripts folder

• you install a file in the Documentation folder
of the More stuff folder

• you install a file in the Initialization folder
of the More stuff folder

• you install a new version of the Satimage
osax.

3.4 Installing the Satimage
osax

The Satimage scripting addition (or “Satimage
osax”) makes available to all scripts and applets,
independently of Smile, a significant subset of
Smile’s features, described in section 18.1.
The Satimage osax is not required for the basic
operation of Smile: you can choose to install it
or not.
Note however that you must not run Smile
with an outdated version of the Satimage osax
installed.

3.4.1 First install of the Satimage
osax

To install the Satimage osax, copy the Satim-
age file, either into the ScriptingAdditions folder
of the Library folder located at the root of
your startup disk, or into the ScriptingAdditions
folder of the Library folder located in your user’s
space (Home directory). If a ScriptingAdditions

folder does not exist at the said location, create
one with that exact name (i.e., without a space).

3.4.2 Installing an upgrade of the
Satimage osax

Refer to the section just above about where to
install the Satimage osax.
To replace the Satimage file with a more recent
version, quit all applications, then copy the new
file in place of the old one.
If the system does not grant you permission to do
so, proceed as follows: move the older Satimage
file to the desktop, install the newer Satimage
to where it belongs, then restart the computer,
finally trash the older Satimage file.

3.5 Installing additional com-
ponents

Installing additional components is described in
the Read Me file which ships with the compo-
nent.

3.6 Multiple users support

Smile fully supports multiple users. Setting it to
work with multiple users requires specific steps
when installing Smile. If you are the only user of
your machine install Smile in your Applications
folder as described above in this chapter, and
you may skip the present section.

We give the instructions below for the admin-
istrator when needing Smile to work in a multiple
users environment. More information regarding
how Smile’s folders work, and for providing a

20 CHAPTER 3. INSTALLATION

more user account-specific behavior is given in
section 24.

1. Smile creates a Smile folder in the Appli-
cation support folder of the user’s domain.
That folder is called the user Smile folder.

2. when quitting, Smile saves to disk some
variables, which include the user’s prefer-
ences settings. These variables are stored in
a file named Globals. Smile saves the Glob-
als file in the user Smile folder.

3. when launching, Smile loads the preferences
settings from the Globals file in the user
Smile folder. If that file does not exist,
Smile loads the preferences settings from the
SmileGlobals file of the Class Scripts folder
that is located in the Smile application’s
folder.

4. when quitting, Smile saves the contents of a
particular text window, the Worksheet, as a
file in the user Smile folder (see 11.1).

Chapter 4

Entering the world of Smile: scripting
and debuging in text windows

4.1 Smile, a different experi-
ence of scripting

Smile is a script editor for AppleScript which is
conceptually different from other script editors.
Smile features text windows in which you can
compile and run any piece of script on the fly.
Pressing the Enter key (not Carriage Return
like in Terminal) in a text window will compile
and execute the current line (or text selection).

Text windows thus offer a different experience
of scripting — interactive scripting. This unique
feature will help you a great deal as you test
and debug scripts.

Once you enter the world of Smile, you test
and improve your script at the same time as you
are writing it, in a text window. Once your script
is sufficiently checked you will make it into a reg-
ular script or applet: this is where you will use
Smile’s script windows, those windows of Smile
which mimic Script Editor’s windows.

4.2 Scripting and debug in text
windows

4.2.1 Making a new text window

Pull down the File menu, select New text.
You can set the respective keyboard shortcuts
for New text and New script in the Preferences
panel (see section 11.5).
You can change the default settings for the new
text windows in the Preferences panel (see sec-
tion 11.5.

4.2.2 Executing scripts in text win-
dows

When you press the Enter key in a text window,
the current line or the selected text is compiled,
and executed if it is executable. The selected
text may include declarations of properties and
global variables, handlers, and executable lines.

This is what is called “running a script
in/from a text window”.

Note that, unlike in the script windows, the

21

22 CHAPTER 4. ENTERING THE WORLD OF SMILE: SCRIPTS IN TEXT WINDOWS

lines are processed in their order in the window.
Thus, in text windows, it is better to place dec-
larations and handlers at the beginning of the
scripts.

4.2.3 Displaying the result of execu-
tion

By default Smile appends the result of the
execution to the Console window. You can
have the result appended to the text window
itself instead: pull down the Scripting menu and
disable Output to console. You may want to
do so, e.g., if you are using the window as an
advanced calculator.

The Console is a special text window. When
you close it, it remains open but invisible: the
next time it opens, its contents are unchanged.

You can toggle the default behavior regarding
where Smile prints the result in the Preferences
panel (described in section 11.5).
The default behavior has no effect on the
Worksheet: the Worksheet always appends the
results of execution at the end of its own text
(about the Worksheet, see section 11.1).
Except in the Console, results may be prefixed
with the double hyphen (--). This is a setting
that you can change using the Preferences panel
(see section 11.5).

You may want to turn off displaying the
result of execution. Such may be the case e.g. if
the result of the script is too large. To instruct
Smile not to print the result of a script, append
a colon : to the script. Actually this prevents
Smile from generating the string that it would
otherwise have printed, resulting in a possibly
faster execution.

Note that, due to some internal limitation of
some versions of AppleScript, AppleScript may
be unable to generate the string required to dis-
play the result of execution — this happens in
cases where the string would be a very large one.
If such is the case, Smile will display an error
message Could not display the result. in-
stead of displaying the result. This is not an er-
ror of execution: the script has run and returned
normally.

4.2.4 The scope of the variables —
Smile’s context

A variable that you define in a script running
from a text window is persistent. It will remain
defined until you quit Smile. This unique
feature makes it possible to debug scripts from
text windows. For instance, you change the
value of any variable by running at any moment
from any text window a line such as below.
Example 1
set myVariable to [whatever]

You read the value of a variable by run-
ning simply:
Example 2
myVariable

If some lines appear to cause trouble, you
can modify them, adjust the values of the
variables which are affected, and re-execute only
those lines.

The text windows share a common context,
Smile’s context. The variables and handlers
that you define by compiling them in a text
window augment this context and are available

4.2. SCRIPTING AND DEBUG IN TEXT WINDOWS 23

to any other text window.

When you launch a script from Smile, it runs
in Smile’s context. Though, lines within a tell
application wrapper that targets another ap-
plication do not run in Smile’s context: within
such a wrapper you have to encapsulate lines
with tell me ... end tell in order to have
them run in Smile’s context.

The AppleScript expression every variable
of context returns — as a list of records —
the list of Smile’s context’s variables and of
their values. To get only the names of the
variables, use name of every variable of
context. You can also get the names of the
handlers available to Smile’s context with name
of every handler of context.

Variables that are created (and that get
accessed) using the my prefix are saved when
the user quits Smile. Such variables are called
“permanent” variables. They are available (still,
using the my prefix) next time the user launches
Smile. Example:
Example 3
set my toDoList to {"call Vlad", "lunch
w Donald", "prepare talk f/Congress"}

Next time the user launches Smile — even
if the machine was shut down in between — my
toDoList is still available.

Permanent variables are described in more de-
tail in section 11.7.

Smile’s context includes a set of routines
which are available to your scripts, and that you
may want to use: those are described in section
F.

Note: a window which is connected to an
application (see section 10 about the tell ...
feature) has its own context, that it does not
share with any other window. The context of
such a window is its context property. To
access a variable myVar owned by such a window
myWind from any script, specify:
Example 4
myVar of (get context of myWind)

Chapter 5

Working with scripts in script
windows

Smile opens compiled scripts, applets and
droplets in script windows, which have a col-
ored background. Smile’s script windows work
much like Script Editor’s windows. This section
presents how Smile’s script windows work.

5.1 About script documents
formats

Mac OS X supports two formats for storing
scripts as files: a file can store a script either
“in its resource fork” (the file’s name has no
extension; it is compatible with pre-OS X sys-
tems), or “in its data fork” (the file’s name has
the .scpt extension; older editors cannot open it).

Smile supports both formats. See section 5.6
about how to create files of both formats.

5.2 Making a new script win-
dow

To create a new script window, select New
script in the File menu. Script windows have
a colored background in order to differentiate

them from the text windows, which are white.
You can set the color of the script windows in
the Preferences dialog panel (section 11.5).

You can set the respective keyboard shortcuts
for New script and New text in the Preferences
panel (see section 11.5).
You can change the default settings for the new
script windows in the Preferences panel (see
section 11.5.

The Handlers menu visible in the upper bar
of the window displays the list of the handlers
and script objects (scripts encapsulated within
a script ... end script wrapper) in the
window. Selecting an item in the Handlers menu
will bring the said handler or script object
into view. Option-clicking the Handlers menu
displays the items in alphabetic order.
The Handlers menu can also display additional
comments. A line starting with the double
hyphen followed by the mark keyword generates
an entry in the Handlers menu. The entry
displays the fraction of the line following mark
(31 characters maximum including possible
formatting characters as described below). Use

24

5.4. WORKING WITH A SCRIPT WINDOW 25

this feature to tag a long script. A mark followed
by a hyphen yields a blank line in the menu:
Example 5
-- mark -
-- mark Initialization handlers
-- mark -

If you append <B to a mark line, then the
Handlers menu will display the corresponding
comment (the text after mark) in bold. You
can also use <U (for underline) or <I (for italics).

Also you may want to start the comment with
a space (you would leave two spaces after mark).
This way:

• the tags are slightly indented in the menu

• if you click the pop-up menu with the option
key down the tags will show on top of the
menu.

To show/hide the Handlers menu in a script
window, pull down the Scripting menu and se-
lect List handlers. Text windows also accept a
Handlers menu.

5.3 Opening a script document

To open a script document in Smile, select Open
in the File menu, browse so as to select the
desired file, then click Open.
You can drag any icon from Finder to the Open
dialog.
You can open any script document by dragging
its icon onto Smile’s icon.
If a script document displays Smile’s script
document icon, you can double-click the docu-
ment’s icon to open it with Smile.

The document will open in a new colored script
window.

If the document was saved as run-only (i.e.,
without its source), a new script window opens,
but it displays only an error message. You can
nothing about that: the source of a script which
was saved as run-only is not recoverable.
Saving a window obtained by opening a script
saved as run-only may yield unpredictable re-
sults.

5.4 Working with a script win-
dow

When you work with a script window, you use
the same menu items as if you were editing
normal text (described in chapter 6) and you
also use commands which are specific to scripts,
and that we describe here.

The commands specific to scripts are the menu
items of the Scripting menu:

• Run script will attempt to compile and run
the whole script displayed in the active
script window. The result of the execution
is printed in a special text window named
Console. Sometimes, the Console gets
hidden by other windows: to make it the
front window choose Console in the Window
menu.

To interrupt a script while it is running,
press apple-period or the esc key.

• Check syntax will attempt to compile the
script which is displayed in the active script
window, and will display any compilation
error. Pressing the Enter key has the same

26 CHAPTER 5. WORKING WITH SCRIPTS IN SCRIPT WINDOWS

effect as choosing Check syntax — except
that the keyboard shortcut remains avail-
able even if you did not make any change to
the script since its last compilation.

• Start recording (toggles to Stop recording)
will record in the active script window, in
the form of AppleScript script lines, the
user’s actions until Stop recording is finally
selected.
As of MacOS X 10.2.1, not all applications
are recordable. Finder is not fully record-
able.

• the tell ..., logout, Copy translate menu items
are related to connecting windows to appli-
cations. You may want to use this feature
to perform interactive scripting of a given
application, and also if you hit portability
issues of your scripts. See section 10 for in-
structions to connect a window to an appli-
cation. See Appendix B for more informa-
tion regarding the portability issues and the
use of raw codes.

• Find definition retrieves, if available, the def-
inition of the term which is currently se-
lected. The term may be a verb (e.g. copy)
or a class name (e.g. window). Smile
searches first its own dictionary, then it
searches for all definitions of the term which
can be found in AppleScript’s basic dictio-
nary or in the dictionaries of the currently
installed Scripting Additions. If the active
window is connected to some application
(see section 10), Smile searches the appli-
cation’s dictionary first instead of its own
dictionary.
If Smile finds the definition for the term, it
opens the dictionary (-ies) where the term
was found.

• Output to console. When the active win-
dow is a script window, Output to console
is greyed out and enabled: script windows
always print their result to the Console —
such is not the case for text windows, as
you have seen above.

• List handlers, hides and shows the Handlers
menu of the active window. By default,
script windows have a Handlers menu, text
windows do not.

5.5 Editing an applet or a
droplet

To open an applet or a droplet in Smile, use the
Open item of the File menu, or drag its icon on
Smile’s icon.

The path to me expression, when used in an
applet, returns the path to the applet. You can
debug scripts which use path to me: the path
to me expression, when run from a script win-
dow in Smile, returns the path to the window’s
document (or applet).

5.6 Saving a script document

To save a script, use the Save or the Save as ...
menu items of the File menu. If you are saving
an unsaved script window, or if you are using
Save as ..., a Format menu in the Save dialog box
lets you choose one out of several options. If you
choose to save the script as a regular script Doc-
ument (the default option), then you may still
choose to save it in either of the two formats
supported (see section 5.1):

• to save the script as a file compatible with

5.8. SAVING A SCRIPT WITHOUT ITS SOURCE 27

pre-X systems, do not supply an extension
to its name

• to save the script as a data-only file only for
OS X, supply the .scpt extension to the new
file name.

5.7 Saving an applet or a
droplet

Applets and droplets are stand-alone applica-
tions that AppleScript makes out of one script.
To save a script as an applet, choose Application
in the Format menu of the Save Navigation
dialog.
When double-clicked, an applet launches the
execution of its run (or unnamed) handler, then
it quits. To have the applet remain open after
having executed its run handler (which may be
empty), so that another script or application
can communicate with it, choose Stay-open
application in the Format menu.
If the script includes a open handler, Smile saves
it as a droplet instead of an applet. A droplet
launches its open handler when the user drags a
file or a folder or several of them on its icon.

5.8 Saving a script without its
source

The three last items of the Format menu of the
Save dialog box are for saving the script as run-
only, that is, without retaining the source of the
script. After you save with this option, you can
no longer edit nor view the script: proceed with
care and keep an editable copy.

Chapter 6

Editing text in text windows

Smile includes a styled text editor. Smile’s
text editing features work also in the script
windows.

Smile’s styled text editor is fully scriptable:
you can script and automatize the operations
that this chapter describes. Chapter 13 describes
text editing by script.

6.1 About text documents for-
mats

6.1.1 Unicode support

Smile’s text windows do not support multi-
lingual in-line input. Smile’s text windows
can display Unicode imported by dragging or
by pasting, or when the result of a script is a
Unicode string, and they store Unicode reliably
when you save the window to disk.

To make and to read Unicode text, use Smile’s
Unicode text editor windows (see 12.3).

6.1.2 ISO-8859-1 support

By default, Smile saves text as Macintosh-
encoded. You can save a text window using

the ISO-Latin 1 (ISO-8859-1) encoding: the text
window being the active window, select Save as
in the File menu. In the Save panel, pull down
the Format menu, select Plain text, ISO-8859-1,
then click Save. Plain text means that any text
style will be suppressed.
If you use the standard Open menu to open an
existing ISO-8859-1 encoded file, the window will
display unreadable characters. To open an exist-
ing ISO-8859-1 encoded file, use the Open ISO-
Latin1 ... command provided to this effect. The
Open ISO-Latin1 ... command is part of Smile’s
text tools: see 12.3.

6.2 Making a new text window

To create a new text window, select New text
in the File menu. Text windows have a white
background in order to differentiate them from
the script windows, which are colored.

You can set the keyboard shortcuts for New
script and New text in the Preferences panel (see
section 11.5).
The default settings for the new text window can
be changed in the Preferences panel (see section
11.5).

28

6.5. SAVING A TEXT WINDOW 29

6.3 Opening a text document

To open a text document in Smile, select Open
in the File menu, browse until you select the
desired file, then click Open.
You can drop any icon from Finder into the
Open dialog.
You can open any text document by dragging
its icon on Smile’s icon.
To open a text document which displays Smile’s
text document icon, you can double-click the
document’s icon.
The document will open in a new white text
window.

To display the contents of any file as text in a
new text window, select Open data fork ... in the
Scripts menu (the menu with a parchment icon),
browse to the desired file, then click Open.
If the file size is large, opening its data fork may
take a long time. If you press the Escape key
while waiting, Smile will stop reading the file
and will display what was read so far.

6.4 Closing a text window

Select Close in the File menu.

To quickly dismiss a window without saving its
contents, use the Close without saving command
of the Scripts menu (the menu with a parchment
icon), shortcut apple-shift-W. If used acciden-
tally, this shortcut can cause data loss, thus you
may want to un-install the concerned user script.
You may need your administrator’s clearance to
do so. See Chapter 9 about how to disable items
of the Scripts menu.

6.5 Saving a text window

To save a text document, use the Save or Save as
... menu items of the File menu. If you are saving
an unsaved text window, or if you are using Save
as ..., a Format menu in the Save dialog box lets
you choose one of three options:

• Document creates a Macintosh-encoded doc-
ument containing styled text. The file will
store the window’s settings, and it will have
an icon of a Smile text document. The file
has the ”TEXT” file type and a resource
fork.

• Plain text creates a Macintosh-encoded doc-
ument containing raw monostyled text. The
file will not store any settings of the window,
but it will have an icon of a Smile text doc-
ument. The file has the ”TEXT” file type
and no resource fork.

• Plain text, ISO-8859-1 creates a ISO-8859-1-
encoded document containing raw (monos-
tyled) text. The file will not store any set-
tings of the window, and it will not have
an icon. The file has no file type and no
resource fork.

Included in those window’s settings which get
saved only if you choose the Document option in
the Format menu is the window’s object script
if it owns one. See section 16.3.1 about using
object scripts.

6.6 Using drag and drop in text
windows

Smile’s text windows implement fully drag and
drop.

30 CHAPTER 6. EDITING TEXT IN TEXT WINDOWS

• you can drag text from one location to an-
other inside a given text window

• you can duplicate text from one location to
another inside a given text window, by drag-
ging it while holding the option key down.

• you can drag text from one window to an-
other. The text is not deleted from the
source window.

• you can drag text from one window of Smile
to the desktop or to any Finder’s window:
this will create a text clipping file.

• you can drag the icon of any file into a win-
dow of Smile: this will insert the full path
of the file at the drop location as a string,
unless the file is a text clipping: dragging a
text clipping insert its contents at the drop
location.

• you can drag the icon of any file into a win-
dow of Smile while holding the shift key
down: this will insert the file’s POSIX path
at the drop location.

• you can drag the icon of any file into a win-
dow of Smile while holding the apple key
down: this will insert the file’s AppleScript
reference at the drop location.

• you can drag the icon of any script file into a
window of Smile while holding the apple and
ctrl keys down: this will insert the script’s
source as a string at the drop location.

• you can drag the icon from the title bar of a
document window of Smile. Dragging it to
the desktop or to any Finder’s window will
create a copy of the file. You can drop that
icon into a Navigation Services dialog, or to
other applications which may use it as a file

reference: for instance you can drag the icon
of an .html file to your browser’s icon in the
Dock.

6.7 Editing text

Smile’s Text menu offers the menu items that are
common for editing styled text:

• Font, Size, Style and Color

• Line width ... prompts you to enter a new
value for the width of the text in pixels.
Smile considers this value only if the Fit to
window menu item is disabled.

• Fit to window when checked, the width of
the text adjusts automatically to the size of
the window: lines wrap automatically.

• Tab width prompts you to enter a new value
for the size of the tabulation, in pixels. Use
a small value such as 32 to indent a script.
Use a larger value such as 200 to display a
table.

• Shift right and Shift left change the indenta-
tion level of the selected lines.

You can set the default values for the settings
above and also for the window size in the
Preferences panel (described in section 11.5).

You will find also more commands in the
Scripts menu (the menu with a parchment icon):

• Duplicate duplicates the selected text. Same
as the sequence Copy Paste Paste but pre-
serves the contents of the clipboard.

• Copy style and Paste style

6.9. TEXT SEARCHES 31

• Iso-Latin-1->Mac and Mac->Iso-Latin-1 con-
vert text between the Windows and Macin-
tosh ASCII encodings. These menu items
work on the selected text or on the whole
text if no text is selected.

• the Text section of the Scripts menu offers
additional tools for working on text. Those
are are presented below, in section 12.3 of
the chapter devoted to advanced text edit-
ing.

6.8 Selection keyboard short-
cuts — Mouse tricks

You can move the insertion point and rapidly se-
lect text with the selection keyboard shortcuts.
These shortcuts belong to the Mac OS, most ap-
plications support them. Here are the rules:

• use the arrows to move the insertion point
one character left/right or one line up/down

• use the arrows while holding down the alt
key to move the insertion point one word
left/right or one page up/down

• use the arrows while holding down the apple
key to move the insertion point to the be-
ginning/end of the current line/document.
Note that, with the left and right arrows,
the insertion point moves to the correspond-
ing end of the current line, not the end of
the current paragraph. In other terms, the
left and right arrows move the cursor hori-
zontally only.

• holding down the shift key while using any
of the combinations above selects text ac-
cording to the same rules, instead of moving
the insertion point.

Some mouse manipulations, which are avail-
able in almost any text editing software, are not
known to all users. We briefly describe them
here:

Selecting words Double-clicking selects one
word. Double-clicking then dragging (some-
times called one click and a half) selects a
range of words.

Selecting paragraphs Triple-clicking selects
one paragraph (the block of text included
between two Carriage Return characters).
Triple-clicking then dragging (sometimes
called two clicks and a half) selects a range
of paragraphs.

6.9 Text searches

To perform text searches and replacements, use
the Find dialog. You can also perform some
searches without opening the dialog, using the
menu items of the Edit menu:

• Find opens (or brings into view) the Find
dialog

• Find again finds the next occurrence of the
current search string in the active window

• Enter selection sets the text currently se-
lected as the search string, but does not per-
form the search

• Find selection sets the text currently selected
as the search string, and searches its next
occurrence in the active window

Note regarding the keyboard shortcuts: since
it is standard under OS X to have apple-H hide
the application, the original apple-H keyboard
shortcut for Find selection was changed into

32 CHAPTER 6. EDITING TEXT IN TEXT WINDOWS

apple-shift-H. This shortcut, in turn, conflicts
with a shortcut of the Programmer’s tools — if
you have installed the Programmer’s tools.

Using Smile’s Find dialog, you can perform
searches in multiple files, and also use regular
expressions (see 12.1.3). These features are
described in section 12.1.
A more sophisticated Find dialog, the Enhanced
Find dialog, is available as an addition to
Smile (a separate download). The Enhanced
Find dialog supports more options such as file
renaming, background tasking and working on
all open windows, and it includes more help
about Regular expressions.

Chapter 7

Using the dictionaries

Any scriptable application and scripting
addition has a dictionary, which presents its
AppleScript terminology. Smile offers several
ways of opening a given dictionary.

Smile opens dictionaries in text windows
which display a Index pop-up menu in their tool-
bar. You can handle dictionary windows as stan-
dard text windows. The Index menu displays the
list of the suites (bold, underlined), of the verbs
(plain text), of the classes (italics). Selecting
any of these items will scroll the window so as to
make it visible.

7.1 Searching a term’s defini-
tion

To display the definition of a given term, select
the term, then select Find definition from the
Scripting menu. The term may be a verb (e.g.
copy) or a class name (e.g. window). Smile
searches first its own dictionary, then it searches
for all definitions of the term which can be
found in AppleScript’s basic dictionary or in the
dictionaries of the currently installed Scripting
Additions. If the active window is connected to
some application (see section 10), Smile searches

the application’s dictionary first instead of its
own dictionary.
If Smile finds the definition for the term, it opens
the dictionary or dictionaries where the term was
found, and it brings the relevant entry into view.

7.2 Opening the dictionary of
an application — Opening
the dictionary of a Script-
ing Addition

Select Other ... in the Open dictionary ...
submenu of the File menu. The Open dialog box
shows only those files which have a dictionary.
Browse to select the desired file then click Open.

33

34 CHAPTER 7. USING THE DICTIONARIES

7.3 Opening the dictionary of
an application which is run-
ning — Opening the dictio-
nary of a Scripting Addi-
tion which is installed

The Open dictionary ... submenu of the File menu
displays a list of items intended for quickly open-
ing some dictionaries:

• AppleScript itself gives you access to the ba-
sic AppleScript dictionary

• Scripting additions, a sub-menu, displays all
the scripting additions that are currently in-
stalled

• the scriptable applications which are cur-
rently running

• System Events, a background application
which supplies several useful commands,
particularly concerning files, folders and vol-
umes.

Depending on various factors, the Open dictio-
nary ... submenu of the File menu displays may
be lengthy to build, slowing down your computer
when you pull down the File menu. If you expe-
rience such a slow-down, disable the Open dictio-
nary ... sub-menu in the Preferences panel (see
11.5).

7.4 Opening the dictionary of
the target application of a
window

If a window is connected to an application (see
section 10 regarding that topic), then the menu

in its toolbar provides a fast access to the appli-
cation’s dictionary.

7.5 Opening AppleScript’s dic-
tionary

You open AppleScript’s own dictionary using
the Open dictionary ... submenu of the File
menu. Alternately, type some basic AppleScript
class name such as list, select it and choose
Find definition in the Scripting menu.

You will find in AppleScript’s basic dictio-
nary, in a short form, some of the information
available in the official documentation of Ap-
pleScript. For instance, you will find there as a
reminder, at the entry list, all the properties
of lists, length, reverse and rest. You’ll also
find, e.g., all the operators that AppleScript
supports, and also all the prepositions that you
may use in your handler definitions.

Thus, this dictionary is very precious for
avoiding syntax errors, and fully benefiting from
the features offered by AppleScript. But be cau-
tious! Not all the terms of that dictionary are
supported by AppleScript or by the applications.
Some of them may even be discontinued eventu-
ally.

Chapter 8

Scripting faster with the “Balance”
command

Balance is a command available as a user script
(see Chapter 9 for information about the user
scripts). It is available through a keyboard
shortcut, apple-shift-E. Balance performs several
elementary functions for you.

8.1 Syntax pre-typing

If some text is selected, Balance will try to find
it as a verb in one of the dictionaries: Balance
applies the same rules as the Find definition
menu item described in section 7.1.
If if finds the verb, Balance will write the whole
set of parameters for the verb, required or
optional. Variable names that Balance writes
are intended only to suggest the type of variable
required.
Example 6
display dialog

will expand into:

Example 7
display dialog MyString default answer
MyString buttons MyList default button

MyNumber with icon MyNumber with icon
MyStop giving up after MyInteger

8.2 Parentheses balancing

If no text was selected, or if the selected text
was not found in any dictionary, then Balance
will check that parentheses, brackets, braces and
double-quotes are balanced. If some balancing
error is detected, it will highlight the character
where the error was detected. If some pair or
pairs are not closed, Balance will close them. In
which case, it will highlight the characters that
it added, so that you can check its action. For
example, Balance will complement:

[...] & (item i of {"Ga", "Bu", "Zo",
"Meu

into:

[...] & (item i of {"Ga", "Bu", "Zo",
"Meu"})

35

36 CHAPTER 8. SCRIPTING FASTER WITH THE “BALANCE” COMMAND

8.3 Wrappers balancing

If there was no problem with parentheses,
Balance will try closing a wrapping structure.
For instance, Balance will expand:

if (someCondition)

into:

if (someCondition) then
| (<-- insertion point here)

else

end if

Balance handles the following AppleScript
wrappers: tell, on [handler], to [handler],
repeat, if, script, try, with timeout, all
considering’s, and all ignoring’s. If you trig-
ger Balance after a tell, it will present a dialog
to let you choose any of the scriptable applica-
tions available — and it will complete the tell
line for you.

8.4 “Balance()” call to your
script

If the object script of the active window contains
a Balance() handler, then Balance will perform
none of the above: it will call that Balance()
handler (object scripts are described in section
16.3.1). This mechanism allows for providing a
keyboard shortcut to some (supposedly repeti-
tive) script specific to one given window.
The Balance() handler must not require any
parameter. In the handler — as in any object
script — use the container invisible property

of the script to refer to the owner of the script.
Example 8
on Balance()

change "http://" into "" in
selection of container
end Balance

Chapter 9

The Scripts menu

The rightmost menu of Smile’s menu bar (left
to the Windows and Help menus) is an icon of a
script. This menu is called the Scripts menu of
Smile — not to be confused with the Scripting
menu, its left neighbor.

(If Smile’s menu bar does not display such
a menu, probably Smile could not locate the
associated User Scripts folder. Regarding
installing Smile’s folders, including the User
Scripts folder, see Chapter 24.)

The Scripts menu provides a way to activate
a script — as well as opening documents — by
menu. Smile’s mechanism for the Scripts menu
supports hierarchical menus, separation lines,
and keyboard shortcuts.

Smile’s Scripts menu ships with a number
of menu items. You can make your personal
scripts available in this menu. Additional items,
e.g. sets of specialized scripts, are available in
other places. For instance, you will find more
items to populate the Scripts menu in the Smile
Extras/More User Scripts folder located in the
Smile folder. You can also download more
additions for Smile, including additional user
scripts, from the links provided in Smile’s home

page.

This section describes how to use the Scripts
menu, and how to customize it, including how to
add your own “user scripts”.

9.1 How to use the “Scripts”
menu

Selecting one of the items of the Scripts menu
launches the corresponding user script, or opens
the corresponding document, respectively.

In addition to scripts and documents, you
can put aliases to scriptable applications and
aliases to scripting additions in the User Scripts.
Selecting the corresponding item of the Scripts
menu will open the dictionary of the application
(if it has one) or of the scripting addition,
respectively.

To open one of the user scripts — for instance,
to view or to edit the script — select its name
in the Scripts menu while holding down the alt
key. (Of course, you can use the Open ... item
of the File menu as well).
You may want to use the scripts that come

37

http://www.satimage-software.com/en/softx.html#smile
http://www.satimage-software.com/en/softx.html#smile

38 CHAPTER 9. THE SCRIPTS MENU

included in the User Scripts as samples.

While a user script is running, a script can
get its path as the user script file property
of Smile. While no user script is running, the
user script file property returns the path
to the user script which ran last.

9.2 Adding and removing
menu items to/from the
“Scripts” menu

The Scripts menu displays the names of the
scripts and the documents which are located in
the User Scripts folder. The scripts located in
the User Scripts folder are called user scripts.
The documents that can be opened by the Scripts
menu are those documents that Smile can open:
the text documents, Smile’s custom dialogs,
the applets and droplets (the Scripts menu
does not launch applets, it opens their scripts),
QuickTime movies and most kinds of sound files.

To add an item to the Scripts menu, copy the
corresponding file to the User Scripts folder.
To remove an item from the Scripts menu,
remove the corresponding file from the User
Scripts folder.
When you change the contents of the User
Scripts folder, you do not need to quit Smile.
Pull down the Scripts menu once to update the
menu.

To add or remove a sub-menu, add or remove
the corresponding folder to or from the User
Scripts folder (see below).

You can also use the Favorites sub-menu of the

Scripts to add items dynamically to the Scripts
menu. Use Add window 1 to add the document
opened in the front window to the menu. Use
Add Finder’s selection to add the file or the folder
that is currently selected in Finder, or several of
them, to the menu.
It is handy, when you work for a while on a given
folder, to make it available in the Favorites menu.

9.3 Displaying hierarchical
menus in the “Scripts”
menu

The Scripts menu displays any folder located
in the User Scripts folder as a sub-menu; like
for the User Scripts folder itself, the sub-menu
displays the list of the files located in that
folder.
The same is true for folders nested at any
level in such folders, making possible to design
hierarchical menus of any depth.

The space character “ ” as the first charac-
ter for the name of a folder located in the User
Scripts folder has a special meaning, that the
following section describes.

9.4 Grouping items in the
“Scripts” menu

Folders that are located in the User Scripts
folder and whose name begins with the space
character “ ” are treated differently: their con-
tents are displayed directly in the Scripts menu
(not as a sub-menu), as a group, i.e. separated
from the previous and from the subsequent
items by a separating (blank) menu item.

9.7. PROVIDING SHORTCUTS TO THE ITEMS OF THE “SCRIPTS” MENU 39

Any file whose name begins with the hyphen
–, or an alias to such a file, will get displayed
in the Scripts menu as a separating menu item.
You cannot open it via the Scripts menu.

9.5 Using aliases in the
“Scripts” menu

The User Scripts folder may contain aliases to
files. The Scripts menu displays the name of the
original file, not the name of the alias file.

As mentioned above, copying the alias of an
application or the alias of a scripting addition
into the User Scripts provides a convenient way
of opening its dictionary.

The User Scripts folder may also contain
aliases to folders. If you use personal user
scripts, it may be handy (in particular with re-
spect to installation of future versions of Smile)
to store them in a folder in your user domain,
and to make an alias to this folder in the User
Scripts folder.

9.6 Sorting the items of the
“Scripts” menu

By default, the items of the Scripts menu are al-
phabetically sorted. You can use the two follow-
ing mechanisms to alter the order of the menu
items:

• The entry for an alias file displays the name
of the original file, but it uses the name of
the alias file for the alphabetical sort. By
providing specific names to alias files, you
can have the Scripts menu’s items sorted ar-
bitrarily. Here is an example:

You have created two user scripts: Open
database and Close database. Their order in
the menu is: Close database, Open database.
Now you want them to display in the re-
verse order, and in the bottom of the Scripts
menu. Move those files to another location.
Create aliases to them in the User Scripts
folder. Name the aliases, respectively, zza-
Open database and zzbClose database. The
zz prefix will ensure that they be the last
items, and the a and b prefixes will provide
for the order of the items.

• The exact same mechanism can be used on
folders, in order to customize the order of
the sub-menus of the Scripts menu.

• You can create separating menu items at ar-
bitrary places, by naming adequately aliases
to files whose names would begin with –.

• The groups of items (the contents of those
folders whose name starts with the space
character “ ”) can also be re-arranged by
naming adequately the concerned folders.
For instance, naming a folder 0First Items
is a good way of having its contents dis-
played at the top of the Scripts menu.

9.7 Providing shortcuts to the
items of the “Scripts” menu

If the name of a user script ends with the slash
character / followed by another character, for
instance Send mail/@, the final character, (@
in the example) can be used in combination
with the apple key as the keyboard shortcut for
selecting the menu.

40 CHAPTER 9. THE SCRIPTS MENU

The shortcut is case-sensitive: if the final
character of the name of the script is a low
case character, for instance Just a Test /j, the
shortcut combination is simply apple + ’key’,
for instance apple-J. If the final character is an
uppercase character, for instance Just a Test
/J, the shortcut combination is apple-shift +
’key’, for instance apple-shift-J.

If this shortcut is a number 0 ... 9, you
must use the numeric keypad to activate it.
(Mac OS Classic only: if the settings of your
system allow for it, you can alternately use the
function keys to activate such shortcuts: F1 for
apple-1, ... , F9 for apple-9 and F10 for apple-0.)

By script, you can assign any keyboard short-
cut to any menu item. You can even assign a
keyboard shortcut that will not require the apple
key. The section about the menu and menu item
classes in the Chapter 19 describes that feature.

Chapter 10

Connecting a window to an
application — The “tell ...” feature

10.1 When to connect a win-
dow to an application

You can connect a text or a script window to an
application provided the application is currently
running. Script lines that you execute in such
connected windows are sent directly to the tar-
get application.
Furthermore, linking a window to an application
is how you can generate the translation of a piece
of script into AppleScript’s internal “raw codes”.
Raw codes can serve various purposes, in partic-
ular the portability of your scripts.

10.2 How to connect a window
to an application

To connect the front window to an application,
pull down the Scripting menu then select the
application in the tell ... menu.
To connect a window to an application which is
running but does not show in the tell ... menu
use a script as described in section 10.4.

When a window is connected to an applica-

tion, a menu with the target application’s name
is created in the window’s toolbar. This menu
provides a quick access to the target applica-
tion’s dictionary and to the Copy translate
command.

To terminate the connection of a window,
select Logout in the Scripting menu.

10.3 Making scripts into “raw
code”

Windows connected to an application support
a special Copy command named Copy translate.
Copy translate is a menu item both of the Script-
ing menu and of the menu which appears in the
tool bar. Copy translate works only on a piece of
text which makes a compilable piece of script.
Copying a piece of script with Copy translate
copies to the clipboard the raw codes instead
of the original text. Raw codes are like a pre-
compiled version of the script, that AppleScript
can understand even outside the relevant tell
... end tell wrapper. Raw codes are helpful

41

42 CHAPTER 10. CONNECTING A WINDOW TO AN APPLICATION

for making scripts more portable, and possibly
for other purposes. Portability is discussed in
Appendix B.

10.4 Targeting an application
by script

If thetell ... menu does not display the appli-
cation that you want to target, or if you have
disabled the tell ... menu in the Preferences
panel (see 11.5), or if you want to automatize
that process, you can proceed by script; you
must set the �class targ� property of the
window to application theAppName where
theAppName contains the name of the appli-
cation. theAppName may include the .app
extension. You can run from the window itself:
Example 9
set �class targ� of window 1 to
application "URL Access Scripting"

To logout, set the �class targ� property to
the empty string "".

10.5 The context of a window
connected to an applica-
tion

When you run a piece of script in a window
which is connected to an application, the script
runs in a private context whose parent is the
target application. To access a variable of
that context from another context (e.g. from a
regular text window), you must use the context
property of the window:
Example 10

set theRemoteVar to theVar of (get
context of window 2)

10.6 “Find definition” in a win-
dow connected to an ap-
plication

If the front window is connected to an applica-
tion, the Find definition command described in
section 5.4 will search first the dictionary of the
target application, before searching the Scripting
Additions and AppleScript’s basic dictionary.

10.7 Known bugs

According to Apple’s documentation, running a
script from a window connected to an application
should be equivalent to running the same script
encapsulated within the proper tell ... end
tell wrapper. Unfortunately, this is not entirely
true. There are two known issues:

• the properties of the application itself do
not require a suffix to be recognized as such
when the tell ... end tell is present.
In a window connected to an application,
the its prefix is sometimes required in front
of the properties of the application. The its
prefix is allowed also within the tell ...
end tell wrapper.

• some terms of some applications which have
too much of the flavor of a basic AppleScript
term, for instance the item and alias terms
of the Finder, sometimes yield confusion, re-
sulting in anomalous errors.

Chapter 11

Comfort and productivity

11.1 The Worksheet

Smile offers a special text window, the Work-
sheet. By default Smile opens the Worksheet
when it launches. When you quit Smile, Smile
automatically the Worksheet as a text file in the
Library/Application Support/Smile/ directory of
the user domain.
By default, the Worksheet returns the result of
scripts at the end of its own window — not in
the Console.
You can choose not to use the Worksheet in the
Preferences panel, see 11.5.
To open or re-open the Worksheet, open the
Preferences panel, General tab and use the Open
the Worksheet check box: disable it if it comes
enabled, then enable it.

11.2 Handling windows effi-
ciently

Smile offers several helpers for those users who
have to handle lots of windows and/or who are
concerned with productivity. For optimal effi-
ciency, all those commands can be activated via
a keyboard shortcut.

Close without saving (apple-shift-W) closes the

active window, skipping the Save changes
before closing alert. This is what is called
deleting the window, and can be performed
by script using the delete verb.
You may want to use Close without saving
to execute rapidly a line of script, or a short
script, yet keeping the screen neat. Make a
new text window, type the script, press the
Enter key, then delete the window.
(As for French keyboards, apple-D, for
“Don’t save”, is the shortcut for the Ne pas
enregistrer button of the alert.)

Toggle windows (shortcut keyboard-dependent,
often apple-alt-T) brings the second window
to front while the previously active window
becomes the second frontmost.
You may want to use Toggle windows when
you work with two windows simultaneously.
For instance, Toggle windows, in conjunc-
tion with Compare, Copy and Paste, allows
you to synchronize two files without using
the mouse.

Send to back (apple-shift-B) sends the active
window behind all others.
You may want to use Send to back when
you have to simultaneously handle several
projects, each of them possibly involving

43

44 CHAPTER 11. COMFORT AND PRODUCTIVITY

several windows. Typing apple-shift-B the
required number of times will have the ef-
fect of switching projects.
Send to back is also a solution when you
accidentally activate a window that would
rather remain in the background.

Duplicate (apple-D) if no text is selected, dupli-
cates the active window. (When some text
is selected, Duplicate duplicates the selec-
tion).
Duplicating the active window may be use-
ful if for some reason (e.g. an accidental
deletion of text) you have to synchronize the
currently edited version of some document
with its last saved version. Duplicate the
active window, then close the original doc-
ument without saving the changes, re-open
it, then use Compare to synchronize the win-
dows.

11.3 The “Recent files” menu

The Recent files sub-menu of the File menu
displays the list of the most recently opened
documents. Selecting any item of the list opens
the corresponding document — if it is still
available.
The maximum number of files proposed by
the Recent files sub-menu is stored in the
application’s �class MReF� property, that you
can change.
Example 11
set my �class MReF� to 40

By default the maximum number of recent
files is 20. Changes are effective only once the
user has pulled down the Recent files menu.

11.4 The “Favorites” menu

The Favorites sub-menu of the Scripts menu pro-
vides a way of opening files at a click.
The Favorites sub-menu displays folders as sub-
menus which list the contents of the folder.
Selecting the name of an application in the Fa-
vorites sub-menu opens the dictionary of the ap-
plication.
By default, the Favorites sub-menu offers three
menu items:

• Add Finder’s selection appends to the Fa-
vorites menu item the file(s) and/or folder(s)
that are selected in Finder

• Add window 1 appends to the Favorites menu
item the document that is open in the front
window

• Clear menu clears the menu

11.5 Preferences

To open the Preferences panel, pull down
the Smile menu and select Preferences. The
Preferences panel allows you to change the
settings described below. Changes take effect
immediately.

11.5.1 The “General” pane

Cmd-N is the keyboard shortcut for: By
default, the two first items of the File
menu, namely New script and New text
are given the apple-N and apple-shift-N
combinations as their keyboard shortcuts,
respectively. You can invert this choice and
choose apple-N for the New text.

11.5. PREFERENCES 45

When running a script in a text window:
This section is where you choose where
and how the result of the execution of a
script from a text window (see 4.2) will be
displayed.
Note that the In text windows, prefix result
with ’–’ option does not concern the Con-
sole: the results printed to the Console are
never prefixed.

When starting up You can choose to have the
Worksheet open as Smile launches.
You can choose to have Smile re-open the
files which were open last time you quit
Smile.
Use the including dialogs option with cau-
tion. Some dialogs may require specific
initialization steps that are normally per-
formed by a script, and re-opening them di-
rectly may result in unexpected behavior.
At the moment when Smile launches, hold-
ing down the shift key prevents Smile from
re-opening the files. Even if Smile has
started re-opening the files, pressing the
shift key will cancel the re-opening phase,
and the initialization of Smile will resume
normally. The shift key has a temporary
effect: the preference is not changed.

Remember insertion point of text windows
By default, when Smile re-opens a Smile
text document, the text insertion point
assumes the position it had last time the
document was saved. Though this behavior
is generally helpful, you may in some cases
want to change it. For instance, if you have
lots of files to compare using the Compare
feature of Smile (see section 12.2), you will
prefer that they open with the insertion
point at the beginning of the text.

When opening a file: This section is to
protect you against the effect of possible
malicious Smile documents. Documents
created with Smile — e.g. a text document
or a custom dialog — may optionally
store a script (the object’s script). If a
document has such a script, and if that
script contains a prepare handler, Smile
will execute the prepare handler when it
opens the file: many objects of Smile get
initialized properly by a suitable prepare
handler. You may choose as a preference
to have Smile notify you before actually
opening the document if a prepare handler
is present. You may choose to restrict
the protection to only those files which
belong to a given folder (for instance, your
downloads folder or the folder of your mail
attachments).

Once the file is open, it is your responsibil-
ity to check that nothing in the script be
harmful to you. Any of the routines of an
object’s script can trigger a line capable of
an adverse effect, such as click in, close,
save or delete — even if the script does
not include a prepare handler.

11.5.2 The “AppleScript” pane

The AppleScript pane is where you set the
AppleScript formats. In a compiled script the
different categories of terms such as comments,
variables names, literal strings, assume different
text styles: the AppleScript formats.

The Edit format for menu lets you choose one
of the eight categories of terms. To change the
style for a given category, choose the category
in the Edit format for menu, then use the Font,

46 CHAPTER 11. COMFORT AND PRODUCTIVITY

Size, Style and Color sub-menus of the Edit menu.

You can also choose one of the built-in preset
formats with the Preset formats menu. Note
that, whichever the preset format you may have
selected, the menu always reads Preset formats.

The AppleScript pane is also where you can
customize two particular menu items of Smile:
the tell ... item of the Scripting menu, and the
Open dictionary ... item of the File menu.
By default, the latter displays a list of all the
applications which are currently running on the
machine and which have an AppleScript dictio-
nary. Some applications may make this list take
longer to build when they are running. If this
happens, and if it is an aggravation for you, you
can disable the option of building the list. This
setting is effective next time you launch Smile.
By default, the tell ... menu displays a list of
all the applications which are able to handle at
least basic scripting calls such as quit or open.
For reasons similar to those described just above,
the tell ... menu can prove slow to display. The
corresponding checkbox of the AppleScript pane
allows for disabling the tell ... menu.
Once the tell ... menu is disabled, you must use
a script to connect a window to an application,
as described in section 10.4.

11.5.3 The “Windows” pane

The Windows pane is where you change the de-
fault settings for new windows (both script win-
dows and text windows).
Smile use the default settings whenever:

• when you make a new text window using
the New text command

• when you open a new script window, either

by using the New script command, or by
opening a script document or an object’s
script.

The set default size button sets the default
size (height and width) for new windows to the
size of the window just behind the Preferences
panel.

You can also choose one of four colors for
the background of the script windows, in order
to adapt to your personal preferences and your
monitor’s performances. Script windows which
already exist when you change the setting keep
their background color: only newly created win-
dows will assume the new background color.

11.6 Programmer’s tools

The programmer’s tools can be found can be
installed by copying the Smile Extras/More
User Scripts/Programmer’s Tools/ into your
User Scripts folder. The programmer’s tools
offer a set of conversions. The conversions work
only on the selected text — if no text is selected,
they just beep. The Undo command cancels
the latest conversion. Once the conversion
is performed, the result remains selected, so
you can directly perform another conversion if
required.

Decimal to Hexa (apple-shift-H) will convert a
positive integer written in decimal format,
e.g. 10000000000, into its hexadecimal rep-
resentation, e.g. 02 540B E400. The hex-
adecimal digits are separated by spaces into
4-characters blocks.
The input string may contain spaces, e.g.
10 000 000 000. You can convert integers

11.7. VARIABLES THAT ARE SAVED WHEN YOU QUIT SMILE 47

up to 281474976710656 (hexa: FFFF FFFF
FFFF).

Hexa to Decimal (apple-shift-X) will convert a
number written in hexadecimal format into
its decimal representation.
The input string may contain spaces and CR
(carriage return) charagers, e.g. 02 540B
E400. You can convert numbers up to FFFF
FFFF FFFF.

Hexa to String (apple-shift-G) will convert a
string of hexadecimal digits, e.g. 68 65 6C
6C 6F 21, into characters, e.g. hello!, us-
ing AppleScript’s ASCII table.
The input string must contain an even num-
ber of hexadecimal digits, and it may in-
clude spaces and carriage returns. You can
convert strings of any length.

String to Hexa (apple-shift-J) will convert a
string of any length, e.g. ascr, into hex-
adecimal digits, e.g. 61736372, using Ap-
pleScript’s ASCII table.
You can convert strings of any length.

11.7 Variables that are saved
when you quit Smile

Smile supports “permanent” variables, variables
whose contents are saved when you quit Smile,
and are available next time you launch Smile.
A permanent variable can store any kind of
quantity, just like any AppleScript variable.

To define such a permanent variable, create a
variable with the my prefix:
Example 12
set my varName to whateverQuantity

To access such a permanent variable, al-
ways use the my prefix and the get explicit verb:

Example 13
set my globalCount to 1 + (get my
globalCount)

When Smile quits, it stores the permanent
variables in the Globals file located in the
Library/Application Support/Smile directory of
the user domain. That Globals file stores both
the permanent variables that you have created
and those that Smile uses internally to store
your personal preferences.

Deleting or moving that Globals file while
Smile is running has no effect: Smile will store
all the permanent variables into a new Globals
file when you quit.
To reset all preferences to their built-in de-
fault values, delete (or move) the Globals file
while Smile is not running. This will sup-
press the permanent variables that you may
have defined — you may want to do so if some
permanent variable has reached a very large size.

The AppleScript expression every variable
of globals returns — formatted into a record
— all the permanent variables together with
their values. To get only the names of the
variables, use name of every variable of
globals. You can also get the names of
the permanent handlers with name of every
handler of globals. By default, there are no
permanent handlers, but you can define your
own:
Example 14
on ShowThem()

dd("see, it works!")

48 CHAPTER 11. COMFORT AND PRODUCTIVITY

end ShowThem

set my DemoHandler to ShowThem

-- months later ...
my DemoHandler() -- will display the
successful dialog

Part II

The AppleScript-based automation
engine

49

Chapter 12

Advanced text editing

12.1 Advanced text searches

12.1.1 The Enhanced Find panel

Smile’s standard Find panel includes a lot of fea-
tures and is enough for most users.
A Find panel offering more features such as
searching in all the open windows and renam-
ing files, the Enhanced Find panel, is available
as a separate download from Satimage-software’s
site. The present manual covers some features
that are enabled only if you have installed the
Enhanced Find dialog.

12.1.2 Searching in folders

Using the Find panel, you can select a folder
and search the files it contains for the search
string. Enable the Multifile search check box,
then use the Choose folder button to select a
target folder. Finally click Find to launch the
search.

The Find panel will search all text files and
compiled script files (including applets) which
are located inside the selected folder or inside
any nested folder in the selected folder.

A Result window displays the status of the

search in its toolbar, and the results in its main
frame. Each hit results in three lines: one line
which starts with show, one line which quotes
the line where the string was found, and one
empty line. To display the hit, put the insertion
point in the line that starts with show then
press the Enter key.

If you have installed the Enhanced Find panel,
you get the following differences and enhance-
ments:

• you can perform Replace, Replace all, option-
ally then save, on the files of the folder

• you can interrupt the search with the Stop
button

• there is no Multifile search check box. In-
stead, you select all files in . . . in the Find
target: menu.

• the dialog stores the recently searched fold-
ers in a menu.

12.1.3 Regular expressions

The Find panel offers a “Regexp” (for “regular
expressions”) option. If you enable “Regexp”,
the string that you enter as the search string

50

12.3. TEXT TOOLS 51

defines a regular expression pattern: most
characters keep their literal meaning, but some
of them become metacharacters, which allow for
defining advanced text searches. Instructions
and references about regular expressions can be
found in Appendix A.

The Enhanced Find panel offers a self-
explanatory menu to help entering regular
expression patterns.

Some of the more advanced features of the reg-
ular expressions can only be used from a script,
as described in section 18.1 about the Satim-
age osax — they are not available from the Find
panel. Such is the case for the regexpflag pa-
rameter, whose use is described in the Appendix
about Regular Expressions, section A.2.5.

12.2 Comparing files

The Compare command of the Edit menu com-
pares the text of the two frontmost windows,
starting at the current location of the insertion
point in each window, and then selects the first
block in each window which makes a difference
— or the location where a block is missing.

Once you have hit a difference, you may
choose or not to synchronize the windows by
Copy then Paste, and then selecting again Com-
pare (or hitting the keyboard shortcut apple-K)
will jump to the next difference.

For optimal speed, Smile offers in the Scripts
menu a Toggle windows menu item which swaps
the two frontmost windows. You should be able
to rapidly synchronize two files by using the key-
board shortcuts for Compare, Copy, Paste and

Toggle windows.

12.3 Text tools

Smile provides specialized tools to perform some
operations on text, and to manipulate the vari-
ous kinds of text files that you may need to work
with.

12.3.1 Make an AppleScript string

Make an AppleScript string adds double quotes
around the text currently selected, performing
all necessary changes to make it suitable as a
string for AppleScript. Selecting Make an Apple-
Script string with the ctrl key depressed has the
inverse effect.

12.3.2 ISO-Latin1 to Mac and Mac to
ISO-Latin1

ISO-Latin1->Mac and Mac->ISO-Latin1 perform
the encoding conversions of the text selected in
the frontmost window. If no text is selected, the
conversions apply to the whole text.
ISO-Latin1 is the encoding used traditionally by
Microsoft. For instance, if you read the data fork
of a Microsoft Word (.doc extension) document,
performing the ISO-Latin1->Mac conversion will
fix all the unreadable punctuation and accented
characters.

12.3.3 Open ISO-Latin1 ...

Open ISO-Latin1 ... opens a text document
using the ISO-Latin1 encoding. For instance,
if you receive a text file (.txt extension) which
was saved by a Microsoft application, you will
probably have to use Open ISO-Latin1 ... to

52 CHAPTER 12. ADVANCED TEXT EDITING

have it display correctly.

Once you have opened a document by using
the Open ISO-Latin1 ... command, the document
keeps the ISO-Latin1 encoding when you save
it. Note that the data saved in the file does not
include the specification of the encoding: next
time you open the document, you must still use
the Open ISO-Latin1 ... command.

12.3.4 Measure Text

Measure Text opens a dialog box which contin-
uously displays some information regarding the
text contained in the frontmost text or script
window. The Show: menu lets you choose to
display one of the following pieces of informa-
tion:

Selection the boundaries of the current selection

Characters the number of characters in the text

Words the number of words in the text. The
word count is computed using AppleScript’s
definition for words, which depends on var-
ious settings of your system.

Paragraphs the number of paragraphs in the
text. A paragraph is a block of characters
which ends with a CR (ASCII 13) character.

If you enable the Selection Only option, then the
counts of characters, words and paragraphs re-
strict to the text currently selected in the front
window.

12.3.5 Sort paragraphs

Sort paragraphs alphabetically sorts the para-
graphs of the selected text in the frontmost text
or script window. If no text is selected, the sort

applies to the whole text.
To have paragraphs sorted in the reverse alpha-
betical order, press the ctrl key while selecting
the Sort paragraphs command.

Chapter 13

The scriptable text editor — The
Text Suite

Smile sort of supports a double Text Suite:
text editing commands work both on Apple-
Script variables that contain text and on ref-
erences to some text chunk in some window of
Smile.

13.1 Specifying a text range in
a window of Smile

To refer to a range of text in a Smile text docu-
ment, you can use the following keywords :

• character

• word

• paragraph

• text or string

• selection

By default, these descriptors return lists of
strings, for instance paragraphs 1 thru 3 of
window 1 will return a list of three strings.

If you get such an expression as list Smile
returns a list of two integers, the boundaries of

the text described by the expression.

If you get such an expression as text Smile
returns one string, the text described by the
expression.

If you get such an expression as styled
text Smile returns the text described by the
expression as styled text: you can store the text
and its style altogether in one variable and thus
copy styled text from one window to another.

Note that it is more consistent to use the
boundaries property to get the offsets of the
ends of a range of text rather than coercing it to
list since the coercion may lead to unexpected
behaviors in some complex situations.
Examples 15
first character of paragraph after
selection of window 1
words 1 thru 2 of window 1 as text
words 1 thru 2 of window 1 as list
boundaries of words 1 thru 2 of window
1
set theText to words 1 thru 2 of window
1 as styled text

53

54 CHAPTER 13. THE SCRIPTABLE TEXT EDITOR — THE TEXT SUITE

The selection property of a text window
returns a list of two integers, the boundaries of
the text selected.

If you get the selection as text (resp. as
styled text) Smile returns one string, the text
selected (resp. the text selected as styled text).

13.2 whose, where and every

When you use the whose or where clause,
AppleScript builds a list of descriptors. You
can get the whole list with the every keyword,
or any of its items by using the first or last
keywords, or by specifying any integer index.
Examples 16
paragraph 3 of window 1 where it begins
with "If"
-- the third paragraph of the front
window that begins with "If"
first word of (first paragraph of
window 1 where it contains "first")
(every paragraph of window 1 where it
contains "every") as list

13.3 before and after

You can specify a range of text by its location
with respect to another one with before and
after. You can also use before and after to
specify a location for inserting new text.
Examples 17
paragraph after words 1 thru 2 of
window 1
set after text of window 1 to return

set before paragraph 2 of window 2 to
"Name: "

13.4 The properties of the text

The properties of text are provided in the
dictionary under the entry for Class text.
Both get and set — when it makes sense —
can be applied to any property of such text
description(s), or to their contents, or to the
beginning or the end of their content(s).
Examples 18
get color of every paragraph of window
1 where it contains "get"
get paragraph index of first paragraph
of window 1 whose text size is 12
set end of (first paragraph of window 1
whose (length > 30)) to " :)"
set first word of window 1 where it is
"Smile" to "Smile’s"
set first paragraph of window 1 whose
color is purple to "About it"

Chapter 14

The UTF-16 editor

14.1 Overview

Smile includes an experimental Unicode editor.
In its current version, the Unicode editor han-
dles only UTF-16, not UTF-8. Not all features
work normally, including some basic features.
Though, Smile’s Unicode editor saves documents
reliably.

14.2 Using the UTF-16 editor

Selecting the New UTF-16 and Open UTF-16 ...
items of the Unicode sub-menu of the Scripts
menu will open a Unicode editor window.
In Unicode editor windows you can use the
in-line multilingual input system.

In the standard text windows of Smile,
you cannot use the in-line multilingual input
system, but you can paste a Unicode string
from a Unicode editor window into a standard
text window of Smile. It will get saved properly
when you save the window.

In an Unicode editor window like in any
standard text window of Smile (see 4 if you are
not familiar with that) you can run or compile
a line or a block of lines by pressing the Enter

key.

There are some instances where Smile uses
UTF-16 files and edits them in Unicode editor
windows: in particular when you localize a
Smile dialog you edit translation dictionaries in
Unicode editor windows.

If the window that gets opened with the Open
UTF-16 command does not display correctly the
characters, you may fix the problem by copy-
pasting its contents to, then back from, a stan-
dard text window.

55

Chapter 15

Smile custom dialogs

Smile includes an editor and a runtime envi-
ronment for scripted custom Aqua dialogs, com-
monly called Smile dialogs. The dialogs that you
build can use all the features of Smile — includ-
ing, e.g., handling text windows.

15.1 Overview

Custom dialog is the name given to a specific
kind of window which supports the standard
Aqua controls, and that can be stored to disk
as a “dialog file”. In the Finder, dialog files
display an icon of a Lego with Smile’s saucer on
one side.
For instance, Smile’s Preferences and Find panels
are custom dialogs, that you can use as samples.
The Smile Extras/Custom Dialogs/Examples
folder contains basic examples of custom dialogs.

15.2 Running a custom dialog

Running an existing custom dialog consists in
opening the dialog file in Smile.
To open a dialog, double-click its icon, drag it
on the icon of Smile, or use the Open ... item of
Smile’s File menu.

You can store a custom dialog in the User Scripts
folder: the Scripts menu will display its name,
and you can open it by selecting it in the menu.
(See Chapter 9 for information about the Scripts
menu)

15.3 Running a custom dialog
by script

To open a dialog file by script, instruct Smile to
make a new object out of the dialog file:
Example 19
make new basic object with properties
{path name: thePath}

where thePath should contain the path to
the dialog file.
This line returns a reference to the newly
created dialog.
Each time this line is executed, a new copy
of the dialog window is created. To prevent
creation of multiple copies even if the handler
gets called several times use the high-level
handler DoOpen:
Example 20
DoOpen (thePath)

56

15.5. CREATING YOUR OWN CUSTOM DIALOGS 57

15.4 The basics of custom di-
alogs

Dialogs are defined (in Smile’s dictionary) as
objects of class dialog. The dialog class
inherits from the virtual window class. A
dialog may have elements, the objects of class
dialog item, the Aqua “controls” of the dialog.

Smile’s dialog windows support most Aqua
control objects such as buttons, menus and text
fields. Some of the controls may themselves
contain other controls. You will find all details
about each kind of control in Appendix C.

The dialog window and each control may have
an attached script. The scripts handle the user’s
actions. Usually it is enough to provide a script
to the dialog itself only: user’s actions directed
to a given control (e.g., a click in a button)
trigger calls to the script of the container of the
control — not to the script of the control itself.
The container of the control may be the dialog
itself, or a control such as a Group Box.

15.5 Creating your own custom
dialogs

Creating a new dialog window requires three
steps. First, you open a new empty dialog
window. Then you create new controls in the
new dialog. Finally, you write the scripts.

15.5.1 Making a new custom dialog

Select New Dialog in the Dialogs section of the
Scripts menu. A new empty dialog window
opens, in “edit mode”. Another dialog window,
the Dialog components palette, opens at the
same time, also in edit mode.

As with any document, use the Save item of
the File menu to save the dialog to disk.

To create a new empty dialog window by
script, use the standard make verb, as in:
Example 21
make new dialog with properties
{name:"untitled", bounds:{50, 50, 300,
250}}
set mode of result to true

15.5.2 Populating a new custom dia-
log

The Dialog components palette window contains
controls that you can install in your new dialog
window, either with drag-and-drop or by using
Copy and Paste. The Dialog components palette
window can be re-opened at any moment by
selecting Palette in the Dialogs section of the
Scripts menu.

Some kinds of controls (the Group Boxes for
instance) can be a container for other controls.
When you drag a control in such a container
control, the new control gets added as an
element of that parent control — not as an
element of the dialog. To view the hierarchy
to which a given control belongs, use the con-
textual menu (in edit mode). The upper items

58 CHAPTER 15. SMILE CUSTOM DIALOGS

of the contextual menu of a control display the
hierarchy of its containers.

The clipboard commands Cut Copy and Paste
work on dialog items, provided the dialog is in
edit mode; the Undo command is ineffective. The
Paste command pastes into the selection:

• if no dialog item is selected, Paste pastes
the dialog item(s) contained in the clipboard
into the dialog, at the first level.

• if a dialog item is selected and if it can
accept dialog items (a Group Box for in-
stance), Paste pastes the contents of the
clipboard into that dialog item.

• if a dialog item is selected and if it does not
accept dialog items (a Editable Text Box,
for instance) nothing happens.

When you Paste a control, it assumes the
same location (its bounds property) in its new
container as it had in its original container.
Thus, if you copy a control from a large dialog
into a smaller one, you may be pasting it out
of view. If this happens, use the arrow keys to
bring it into view, or use the Clear item of the
Edit menu to remove the new item and then use
drag and drop instead of Copy-Paste.

You can use the Copy style and Paste style
user scripts. These commands work both on
text windows and on dialog items, provided
they are selected and the dialog is in edit mode.

Select all (Edit menu) selects all the elements
of the selected item(s):

• if no dialog item is selected, Select all selects
all the dialog item(s) contained in the dialog
at the first level.

• if one or several dialog item(s) are selected
Select all selects all the elements that they
contain — possibly, no item at all.

15.6 Editing a custom dialog

15.6.1 The edit mode

Dialogs have a boolean property called mode.
When mode is set to false, the dialog is in
running mode, the mode for normal use: this is
the default mode for the dialog when you open it.

To toggle a dialog’s mode property, use the
Edit Mode menu item of the Edit menu.

Setting its mode property to true switches the
dialog into “edit mode”. The edit mode is the
mode which allows to make changes to the dia-
log.
In edit mode you can observe the following:

• the lower-right corner of the dialog window
displays a resize icon

• you can select dialog item(s) using the
mouse and shift-click

• a selected dialog item draws a black rectan-
gular frame and displays its index number
in its lower-right corner.

By using a script, you can set any property of
the dialog and of the controls at any moment,
even while the dialog is not in edit mode.
Example 22
set contained data of dialog item 3 of
dialog "Nuke codes" to ""

15.6. EDITING A CUSTOM DIALOG 59

15.6.2 Dialog editing features

When a dialog is in edit mode, you can perform
the following operations:

Resize the dialog: drag the window’s bottom
right corner.

Resize a control: drag the control’s bottom
right corner.

Move the dialog: move the dialog window to
the location where you want it to open later:
the location is saved in the dialog file.

Move a control: drag it with the mouse. To
move a control by exactly one pixel, select
it and press the keyboard arrows. To move a
control by exactly 20 pixels at a time, press
the keyboard arrows while holding the Shift
key down.

Add a control: use drag-and-drop or Copy-
Paste to add any control in the Palette (or
in any dialog) to your dialog. Both dialogs
must be in edit mode.

Remove a control: drop it to the Trash on the
Desktop, or use the Cut or Clear items of the
Edit menu.

Cut, Copy, Paste, Select All: these com-
mands apply to the selected control(s),
if any. When you Paste a control, it
gets created as a new element — the last
element — in the control that is currently
selected, or in the dialog itself if no control
is selected. Cut and Paste can therefore be
used to renumber items.

Edit the common settings of a control:
double-clicking a control will open its
“settings dialog”. In the settings dialog of
a control you can perform the following:

• set its name or, for the Static Text Box,
its contents.

• set its font to one of the two system
fonts Large size and Small size. (Un-
der a standard US English install of
Jaguar, the system fonts are Lucida
Grande 13 and 11, respectively).

• enable or disable the use script option.
use script specifies whether Smile will
send a click in event when the user
performs an action in the control. Note
that the click in event is sent, not to
that control which is the user’s action’s
target, but to that control’s container.

Edit the specific settings of a control:
clicking a control with the ctrl key down
displays its contextual menu. The contex-
tual menu is where you find the settings
which are specific to each particular kind
of control.

Edit the script of the dialog window:
option-apple-click on the dialog window.

Edit the script of a control: option-apple-
click on the control.

View all the settings of a control: drag-
and-drop it onto any text window.

Get the reference of a control: drag-and-
drop it onto any text window while holding
the apple key down.

15.6.3 The dialog editing tools

The following tools may help you easily achieve
a handsome dialog:

Arrange items: use the Arrange items dialog to
align controls, copy bounds from one control

60 CHAPTER 15. SMILE CUSTOM DIALOGS

to another, and set the font of controls to
one of the system fonts.
Aligning controls does not always align the
texts they contain. To align the base line of
texts, use the selection tool (the “marching
ants” rectangle) as a visual ruler.

Object eXpert: use the Object eXpert dialog
to view and edit all the properties of the di-
alog or of a control (actually, Object eXpert
can be used on any object in Smile). The
Object eXpert shows more properties than
dragging a control onto a text window. If
you check more properties, the dialog shows
still more properties, including properties
that may require some caution.
The Object eXpert’s input field supports any
AppleScript expression.
In the select some object group of Object eX-
pert, you can enter any valid AppleScript
descriptor for the object you want to edit,
such as window "Data". This feature is bro-
ken in the original 2.5.2 distribution, so if
you are using the original 2.5.2 distribu-
tion you have to download a working version
from Smile’s home page.

Rescale dialog: a command which resizes the
whole dialog. You provide any real num-
ber (or an expression evaluating to a real
number) as the scaling factor: 1.0 means
no change.

15.7 Scripting a custom dialog

15.7.1 The basic properties of the
controls

Although there are different kinds of controls,
Smile’s dictionary defines only one dialog item

class for all controls. The dialog item class in-
herits from the basic object class. All dialog
items have the following properties:

control kind: an integer which specifies the
kind of the control. You can change the
value for the control kind property, pro-
vided you use one of the values given in Ap-
pendix C. The change is effective only next
time the control will be created, for instance
by Cut-Paste or by closing then re-opening
the dialog.

dialog: a reference to the dialog window where
the control is installed.

container: a reference to the object which con-
tains the control: this may be the dialog
window itself, or some control installed in
the dialog window.

enabled: a boolean which specifies whether the
control is active. For instance, an Editable
Text Box whose enabled property is set to
false is visible but its contents are locked.
A Check Box whose enabled property is set
to false is visible but grayed out.

visible: a boolean which specifies whether the
control is visible. For instance you use
visible to show and hide the Chasing Ar-
rows control.

contained data: the contents of the control.
The meaning of the contained data prop-
erty depends on the kind of the control.
Essentially, contained data contains the
data that is required to handle the user’s
action, e.g. the string that it contains for a
Editable Text Box. See Appendix C for all
details.
(contents is a deprecated alternate for
contained data. Do not use it.)

http://www.satimage-software.com/en/softx.html#smile

15.7. SCRIPTING A CUSTOM DIALOG 61

font: a record describing the font and style in-
formation for the text displayed by the con-
trol. Only those controls that display some
text own a font property. The font prop-
erty is a record, with all fields optional. The
fields are:

font: an integer that specifies one of the
default System fonts, or a string that
specifies the name of a font. -1 is the
large System font, -2 is the small Sys-
tem font. 1 et 2 are for OS9-like Sys-
tem fonts: 1 is for Geneva 9 and 2 is
for New York 9.

text size: an integer that specifies the
size of the font. If a font name was
specified as the font field and no text
size is provided, then the controls as-
sume the dialog’s text size.

color: a list of 3 integer values (Red,
Green, Blue) in the range 0..65535.
Only the Static Text Box and the Ed-
itable Text Box support text coloring.

style: a record containing one or both
of the two labels on styles and
off styles. The values for those
labels are lists which should contain
one or several of the following con-
stants: bold, italic, underline,
outline, shadow, condensed,
expanded, e.g. {on styles: {bold,
italic}}.

call script: a boolean which specifies whether
the user’s actions directed to the control
will trigger a click in event. When the
control’s call script property is set to
true Smile sends click in to the script
of the control’s container (the dialog itself,
or another control) when the user acts on

the control. The use script check box of
the control’s settings dialog reflects its call
script property.

want idle: a boolean which tells whether the
dialog window will receive the idle event
periodically, or not. Using the idle event is
a way of performing background tasking in
Smile.

Some controls have additional properties. Use
the contextual menu in edit mode to set the spe-
cific properties of a control. Use the drag-and-
drop from the dialog window to a text window
to view the list of a control’s properties. Use
its whole property to get still more properties,
including its script.

15.7.2 Events received by the scripts

The scripts of a dialog are where you define how
the dialog will handle the events that it is to
receive. The dialog will receive events created
by the user, as well as events that Smile sends
automatically in several circumstances.
All handlers are optional: you provide only
those which make sense for your application.
All parameters are required in a handler’s
declaration: the first line of the handler should
include all the parameters as specified in the
dictionary (or below), including those that you
do not intend to use.

prepare When Smile creates an object, it sends
a prepare event to the object’s script
before bringing it in view.
You handle prepare with a handler such
as:
Example 23
on prepare theTarget

62 CHAPTER 15. SMILE CUSTOM DIALOGS

-- do whatever required
end prepare

where theTarget is a reference to the
owner of the script, the object which is
being created. You will probably want
to perform any required initialization in
that handler. You may provide a prepare
handler to the dialog, and also to any of its
dialog items. prepare is sent, first to the
dialog, then to the dialog items in the order
of the increasing index values.

While its prepare handler is executing, the
dialog is not visible yet, but it is already
the frontmost window, window 1. The pre-
viously frontmost window is now window 2.

Your prepare handler may — e.g. if some
checking has failed — delete the dialog
which is being created. In other terms you
can cancel the opening of the dialog in the
prepare handler.

store When Smile saves an object, or when
some script requests the value of an object’s
whole property — probably in order to save
it in one form or another — Smile sends
the store event to the object’s script.
You handle store with a handler such as:
Example 24
on store theTarget

-- do whatever required
end store

theTarget contains a reference to the
object being saved, the owner of the script.
The store event is intended for performing
any necessary update or cleaning which
could be required before saving the object.

close Whenever the user closes a dialog’s
window, Smile sends a close event to the
dialog’s script.
You handle close with a handler such as:
Example 25
on close theTarget saving whatever

-- do whatever suitable
continue close theTarget saving

whatever
end close

theTarget contains a reference to the
dialog being closed, the owner of the script.
The continue command is required to have
Smile actually close the object.
Note that the saving parameter of the
close event is required: your script must
specify saving no, saving yes or saving
ask.

delete Whenever Smile deletes an object (for
instance, when the user closes a dialog), it
sends a delete event to the object’s script.
You handle delete with a handler such as:

Example 26
on delete theTarget

-- do whatever suitable
continue delete theTarget

end delete

theTarget contains a reference to the
object being deleted, the owner of the
script. The continue command is required
to have Smile actually dispose of the object.

As for the 2.5.2 version of Smile, controls do
not receive delete.

click in (the verb is click in, not click) As

15.7. SCRIPTING A CUSTOM DIALOG 63

Appendix C describes, most controls send
click in to their container in response to
the user’s actions.
You handle click in with a handler such
as:
Example 27
on click in theTarget item number
theIndex

-- handle user’s action
end click in

theTarget contains a reference to the
container of the concerned control — the
owner of the script.
theIndex contains the index of the control.
To view the index of a control, select the
control while the dialog is in edit mode.
click in does not provide a reference to
the control that was addressed by the user.
A reference to that control is theTarget’s
dialog item theIndex.

Keep in mind that the click in call is
issued only if the call script property
of the control is set to true (the use script
option is activated in the control’s settings
dialog).

By default, Smile keeps silent the execution
errors that occur in a click in handler. If
you want to be notified of execution errors
that might occur in a click in handler, en-
capsulate the body of your handler within a
try ... end try wrapper.

drop When the user drops an item onto one of
those controls which accept drag-and-drop
(see Appendix C), the script of the control
receives a drop event.

You handle drop with a handler such as:
Example 28
on drop theThing onto theTarget at
theLocation

-- handle the drop event
end drop

theThing contains a reference to the
dragged item
theTarget contains a reference to the
control which is receiving the drag
theLocation contains the relative coor-
dinates where the item was dropped (you
can omit at theLocation in the handler’s
declaration).

The control’s �class flav� property, a list
of 4-character strings, specifies what kind of
objects (what “flavors”) the control accepts.
Standard flavors include:

• "hfs ": a file reference (for exemple,
an icon from Finder)

• "long": an integer
• "doub": a real number
• "alis": an alias
• "reco": a record
• "TEXT": a string
• "obj ": a reference to an object of

Smile

An exception is the List Box control, which
receives export (see below) but not drop
when the user performs drag-and-drop
inside the list.

Like for click in, by default Smile keeps
silent the execution errors that occur in a
drop handler.

64 CHAPTER 15. SMILE CUSTOM DIALOGS

export When the user drags from one of those
controls which accept a mouse drag (see
Appendix C), the control’s script receives
an export event. The result returned by
export is the data that will be carried
by the drag-and-drop — and that will be
passed to the drop handler if dropping
occurs on a control of a custom dialog of
Smile.
You handle export with a handler such as:

Example 29
on export theSource

return someValue
end export

theSource contains a reference to the
control where dragging started
someValue is what the control will export.

The control’s �class flav� property, a
list of 4-character strings, specifies what
kind of objects (what “flavors”) the control
may export. See drop above for a list of
standard flavors.
No event will be triggered if the quantity
returned by the export handler fits none of
the declared flavors.

Like for click in, by default Smile keeps
silent the execution errors that occur in a
drop handler.

idle When Smile is idle, it periodically sends
the idle event to those dialog windows
(i.e.: to their scripts) whose want idle
property is set to true. Controls do not
receive idle calls.

You handle idle with a handler such as:
Example 30
on idle theDialog

-- do whatever suitable
return 3

end idle

idle should return a number. This
number specifies how much time, in sec-
onds, Smile will wait before sending idle
to the dialog window again.

15.8 Making a custom dialog
multi-lingual

15.8.1 What is localization?

MacOS X implements a standard mechanism
for making multi-lingual software. Localizing
software consists in providing the resources
necessary for this mechanism, so that as often
as possible users manipulate strings in their own
language.

Smile includes an interface in order to help
you supply the localization resources, so that you
can in a few steps localize any dialog into any
language.

15.8.2 How to localize a dialog

Most of the dialogs provided in the standard
distribution are localized in English and French,
and you can use them as samples.

To localize your new dialog, proceed as follows.

15.8. MAKING A CUSTOM DIALOG MULTI-LINGUAL 65

Fill your dialog in 7-bit English Provide
the contents of the static texts, of the menus,
of the list items, and the names of the items as
strings in English: you must use only the min-
imal character set (7-bit ASCII) and no double
quotes. Those strings are keys: you will provide
as many localized translations to them as nec-
essary, including English. The localized transla-
tions of the keys can include any Unicode char-
acter such as punctuation or Cangies.
Finally, make sure to save your dialog to disk.

In the scripts of the dialog, use localize
Your script may include strings that require to
be localized. Here, too, you will use keys, and
you tell the dialog to localize the key:
Example 31
tell theDialog to set
theLocalizedString to localize theKey
display dialog theLocalizedString

localize supports lists of strings:
Example 32
tell theDialog to set theButtons to
localize {"New drink", "Sandwich",
"Nothing thanks"}
display dialog "Shall I fix you
something?" buttons theButtons

Enter the localization dictionaries While
your dialog is the active window, select Localize
in the Dialogs section of the Scripts menu. This
opens the Localize panel. Use the Localize panel
to add and suppress languages (i.e., localization
dictionaries) to/from the dialog, and to make
changes to the existing localization dictionaries.
The first time you create a dictionary by choos-

ing a language in the add language menu, Smile
builds a “trivial” dictionary, with as many lines
of the kind:

"someKey" = "someKey";

as Smile could detect localizable keys in the
dialogs. Smile gathers the relevant names and
contents of all the dialog items, and searches
the scripts for the localize keyword.
At this step, Smile may have missed some items:
check the list and add the missing items if
necessary.

Smile opens the dictionary in a new window.
The left member of each line must remain
strictly identical to the key that you have used,
between quotes. The right member of the line
is the translation of the key: you may change
it into any Unicode string, e.g. you may write
punctuation or Cangies. Localization dictionar-
ies open in a Unicode text editor window: you
can use in-line input for any language that the
OS supports.

Conform strictly to the syntax for the local-
ization dictionary: bracket each member with
double quotes "...", separate them with the
equal = sign, end the line with a semi-colon ;.
Use /* and */ to bracket comments.

When that first ”trivial” dictionary opens, it
is not saved: make the modifications required
(add punctuation, etc.) and save it (use the
Save item of the File menu).

You can now define additional languages.
When you add a new dictionary, Smile opens a
copy of an existing dictionary: you will edit the
right members of each line.

66 CHAPTER 15. SMILE CUSTOM DIALOGS

Later, the dialog may have changed, and you
may want to again view the list of strings gener-
ated automatically. Use the extract strings but-
ton to do so.

15.8.3 How to localize Smile

Smile has its own localization dictionaries,
that you can use from any script running in
Smile. Thus, you may want to add strings of
your own to Smile’s dictionaries if you have to
use localized strings when there is no specific
custom dialog available.

To call Smile’s dictionary, your script uses the
localize verb. You can apply localize to a
string or to a list of strings.

To edit Smile’s localization dictionaries and
make new ones, select Localize in the Dialogs sec-
tion of the Scripts menu while the active window
is not a dialog. You are prompted to confirm the
command. Once you do so, use the menus of the
Localize dialog.
You may have to relaunch Smile to make the
changes in the dictionaries effective. To test dic-
tionaries, use the settings in the Get info window
in Finder.

15.8.4 How to localize “Localize”

The load dialog button of the Localize panel al-
lows to load the active dialog for localization.
Pressing down the Option key while clicking load
dialog will load the Localize dialog itself.

15.9 Making a custom dialog
into a stand-alone applica-
tion

15.9.1 Why to make a custom dialog
into a stand-alone application

You may want to make the dialog that you have
designed into a stand-alone application if you
want to distribute it to users who do not have
Smile.
The stand-alone application is as simple to in-
stall and use as possible: it consists of one file
(a Finder’s package actually, like most OSX ap-
plications): the user copies only one double-
clickable icon, and there is nothing else to install.

15.9.2 Why not to make a custom di-
alog into a stand-alone applica-
tion

• in its present version, the stand-alone appli-
cation does not have any useful menu.
If you include a User Scripts folder in the
same folder as the stand-alone application,
though, the application shows a correspond-
ing Scripts menu.

• the current version of Smile makes stand-
alone applications with the same creator
code as Smile’s (VIZF). This may yield some
cosmetic problems and/or some confusion
for the users who would use both Smile and
a stand-alone application.

• the stand-alone application is a rather big
file (4.6 MB), no matter how simple your
dialog is.

15.10. ATTACHING A CUSTOM DIALOG TO AN OBJECT 67

15.9.3 The limits of a stand-alone ap-
plication

The stand-alone application can do what Smile
can do — this is why it is such a big file 1. Like
Smile, it can process text files, as well as generate
graphics or drive a digital I/O board.

15.9.4 Making a stand-alone applica-
tion

Make a new dialog as described in this chapter.
Save it to disk. Select the Make stand-alone
application ... menu. You will be prompted
to provide a name and a release number for
your application. If the script runs successfully,
you are presented with the new application in
the Finder which you can double-click to launch.

The new application is a Finder package.
You can browse its contents using the Show
package contents item of Finder’s contextual
menu. The files and folders that you may
want to change or to customize are located in
the Contents/Resources directory of the package.

You can improve the stand-alone application
by the following means:

icon Replace the smile.icns file with your own
icon. This will provide a new icon to the
application.

help Provide your own help files in the Help
folders located in the [language].proj fold-
ers. Your help will be available in the Help
menu.

1Probably Smile 2.5.3 will make smaller stand-alone
application files, the user would have to install the Smile
framework once for all.

Read Me Provide a Read Me file in the same
folder as the stand-alone application. Do
not make the Read Me with Smile: use
TextEdit.

localization Use the mechanism described in
section 15.8 to localize the dialog for any
language. You may also need to perform
some localization of Smile, which is also de-
scribed.

customization In addition to the dialog which
was made into the application, the applica-
tion can use other files, provided you store
them in the More stuff folder and provided
you use the global my gMoreStuffFolder to
access these files.

15.10 Attaching a custom dia-
log to an object

When you create a custom dialog, you can
attach it to an existing object of Smile, such as
a text window for instance. To attach the newly
created dialog to an object theObject, use the
high-level handler DisplayDlog:
Example 33
DisplayDlog (theObject, thePath)

Such a dialog is said to be owned by the
object.
Attaching a dialog to an object has the following
effects:

• when the dialog’s owner is deleted, Smile
closes the dialog automatically

• the dialog’s owner property, containing a
reference to theObject, is available to the
dialog’s prepare handler, which allows for

68 CHAPTER 15. SMILE CUSTOM DIALOGS

performing suitable initialization at the
proper times, i.e. just before the dialog
comes into view

• the dialog’s dialog items whose tag prop-
erty is set to the 4-character raw code of
some property of the object is linked to that
property: changing the contents of the dia-
log item immediately changes the property.
This feature is limited to the built-in prop-
erties of objects.

Chapter 16

Scripting Smile — The basics

16.1 Overview

When you want to use Smile as an automation
platform, you have to program Smile’s behavior.
To program Smile’s behavior, you make objects
(such as a window) and you provide them with
the required behavior by supplying scripts to
them.

In this chapter you become familiar with the
basic aspects of scripting Smile:

• how you create objects and how you address
them

• how you program the objects

• how you open files

• how you interface your scripts, using Smile
dialogs

• how you schedule the execution of your
scripts

Chapter 17 describes more advanced facets of
Smile scripting.

16.2 Manipulating objects —
The object model

16.2.1 Accessing an object

Accessing objects in Smile complies fully with
the rules of AppleScript: you describe an object
by specifying its class, its index — its creation
index in the class — or its name or its id. The
“canonical” description of objects (the unique
description that AppleScript and Smile use
internally) is by id.

Consistently with the general rule, windows
support an alternate description: although
window is not the class of any object in Smile,
the expression window n (n being a positive
integer) returns the nth window in the front-to-
back order.

Thus text window 1 returns the text
window which was created first of all the text
windows currently opened, while window 1
returns the front window, whatever its class.

The index property of a window relates to the
order as a window: you can change it to change
the front-to-back ordering. You cannot change

69

70 CHAPTER 16. SCRIPTING SMILE — THE BASICS

the index of objects that are not windows.

The name property of objects is limited to 256
characters.

Smile supports the whose and every clauses:
Examples 34
reveal window 2 whose class is dialog
close every text window whose name ends
with ".html" saving yes

16.2.2 Making a new object by script

Like with any scriptable application, you can
make new objects from scratch by applying
make new to any of the classes displayed in the
dictionary. Smile supports also more sophis-
ticated ways of creating objects, intended to
make non empty objects or objects that are
fully customized.

Loading a document into a new object

When Smile opens a document file (a text file,
or a compiled script, for instance), it not only
creates a window for that document, but it also
reads data from the file in order to customize
and fill the window. To have Smile open a file
into a new window, provide the file path as the
path name property:
Example 35
make new text window with properties
{path name: thePath}

Creating a customized new object

The objects of Smile own two special properties,
properties and whole. The whole property
returns as a record the “structural” information
about the object, including its elements and its
script, but not the data it may contain such as
the contents of a text window or the current
state or contents of an item of a dialog. The
properties property returns a record that
contains the same information except that it
does not contain the object’s elements nor its
script.

You can use the record returned by those
properties to make a new object with those
same properties. Since the record includes the
class of the new object, you just ask Smile to
make a new basic object:
Example 36
set theRecord to whole of theObject
make new basic object with properties
theRecord
-- will clone theObject

For instance you can create a custom Smile
dialog by the usual means (about Smile dialogs
see Chapter 15), then store it as a record in a
script, and re-open it later by script without
ever saving it to disk.

16.3 Programming the objects
— The object scripts

16.3.1 Introduction to object scripts

To view or edit the object script of a object
which is visible click its contents with the apple-
option keys pressed. If the object is a dialog
item, its container dialog must be in edit mode.

16.3. PROGRAMMING THE OBJECTS — THE OBJECT SCRIPTS 71

If the object is not visible, or to open an object
script by script, use the EditObjectScript
routine.

To close or to save an object script use the
corresponding items of the File menu. Saving an
object script saves it into the copy of the object
which is currently loaded in Smile: the object
script (like most of an object’s properties) is
saved to disk when you save the object.

Its object script is the object’s script prop-
erty. You can dynamically attach a script to an
object, or change its script, by setting its script
property by script. Provide a string containing
a compilable script as the script property. To
get the object’s script’s source, get its script
property as text.

16.3.2 How to write object scripts

Smile defines invisibly a container property to
all object scripts. An object script’s container
property returns the object it belongs to.

You may install two kinds of handlers in an
object script: your own AppleScript subroutine
handlers, and handlers for the AppleEvents sent
by Smile, which belong to Smile’s dictionary.

prepare When Smile creates an object, it sends
a prepare event to the object’s script
before bringing it in view.
You handle prepare with a handler such
as:
Example 37
on prepare theTarget

-- do whatever required
end prepare

where theObject is a reference to the
owner of the script, the object which is
being created. You will probably want to
perform any required initialization in that
handler.

While its prepare handler is executing, a
window is not visible yet, yet it is already
the frontmost window, window 1. The pre-
viously frontmost window is now window 2.

Your prepare handler may — e.g. if some
checking has failed — delete the object
which is being created.

When an object contains other objects,
Smile sends prepare to the container ob-
ject’s object script first, then to the con-
tained objects’ object scripts.

store When Smile saves an object, or when
some script requests the value of an object’s
whole property — probably in order to
save it in a form or another — Smile sends
the store event to the object’s script.
You handle store with a handler such as:
Example 38
on store theTarget

-- do whatever required
end store

theTarget contains a reference to the
object being saved, the owner of the script.
The store event is intended for performing
any necessary update or cleaning which
could be required before saving the object.

close Whenever the user closes an object,
Smile sends a close event to the object’s
script.

72 CHAPTER 16. SCRIPTING SMILE — THE BASICS

You handle close with a handler such as:
Example 39
on close theObject saving whatever

-- do whatever suitable
continue close theObject saving

whatever
end close

theObject contains a reference to the
object being closed, the owner of the script.
The continue command is required to have
Smile close eventually the object.
Note that the saving parameter of the
close event is required: your script must
specify saving no, saving yes or saving
ask.

delete Whenever Smile deletes an object
(for instance, when the user dismisses a
window), Smile sends a delete event to the
object’s script. You handle delete with a
handler such as:
Example 40
on delete theObject

-- do whatever suitable
continue delete theObject

end delete

theObject contains a reference to the
object being deleted, the owner of the
script. The continue command is required
to have Smile dispose eventually of the
object: you can choose — e.g. if some
checking has failed — not to send it.

As for the 2.5.2 version of Smile, the dialog
items do not receive delete.

idle When Smile is idle, it sends periodically
the idle event to those windows (i.e.: to

their scripts) whose want idle property is
set to true.

You handle idle with a handler such as:
Example 41
on idle theWindow

-- do whatever suitable
return 3

end idle

idle should return a real number. This real
number specifies how much time, in seconds,
Smile will wait before sending again idle to
the window.

click in, drop, export Those events are
specific to the controls, those items that re-
ceive the user’s actions. They are described
in detail in the chapter specific to Smile
dialogs, in Section 15.7.

By default, Smile keeps silent the execution
errors that occur in the click in, drop and
export handlers. If you want to be notified
of execution errors that might occur in one
of those handlers, encapsulate the body of
your handler within a try wrapper.

Each object script has as its parent script the
class script of the object, a script shared by all
the objects of the same class. Class scripts are
described in section 17.3. If the object script
includes a handler which intercepts a call previ-
ously handled by the class script (an advanced
programming usage), use continue to propagate
the call to the script’s parent — the class script.

16.3. PROGRAMMING THE OBJECTS — THE OBJECT SCRIPTS 73

16.3.3 How to send commands to an
object script

You can call the handlers that an object script
contains from any script. The calls to Apple-
Script subroutines must be encapsulated in a
tell theObject statement, where theObject
should refer to the owner of the script.
In a tell statement you refer to the object with
the special variable it:
Example 42
tell window 1 to AddOne(it’s name)

Any object script has a parent script, as de-
scribed in the section 17.3 about Class scripts.
If the object script itself does not handle the
call, then the call will be sent to its parent
script, and so on.

The verbs (“AppleEvents”) that are given
in the dictionary and that support a direct
parameter follow a special rule concerning their
target: Smile automatically redirects them to
the direct parameter. Thus the following script:

Example 43
close window 1 saving ask

is equivalent to:
Example 44
tell window 1 to close it saving ask

However, you need to use the tell wrap-
per if the caller script itself already defines a
close handler and you really want to call the
target’s handler.

16.3.4 The object script, a better
script object

Although they have not been designed with that
purpose in mind, Smile’s object scripts offer a
favorable framework to work with AppleScript’s
script objects.

Suppose that your project has to handle sev-
eral AppleScript’s scripts. Normally, you would
use the various ways AppleScript offers to define
scripts. If instead you create some objects in
Smile (windows or interface items in dialogs, typ-
ically) and you provide your scripts as these ob-
ject’s scripts, you will be able to use your scripts
much more simply and reliably — finally, you
will script faster:

• you access your scripts through the object
model:
Example 45
tell element "Beeper" of element
"Sound palette" of dialog " to
buzz(3)

Indeed, unless the object handles di-
rectly the command (in which case the
command would belong to the dictionary),
the tell will really send the command to
the object’s script.

• no more ambiguity about the script’s in-
stanciation: scripters often meet issues
where they unwillingly make multiple copies
of scripts in AppleScript variables, and that
require much care to be handled properly.
When your scripts are script objects, those
problems no longer exist: the object model
provides one unique access to one unique
script that “lives” as long as its owner ex-
ists.

74 CHAPTER 16. SCRIPTING SMILE — THE BASICS

(Of course, making copies of those scripts
into AppleScript variables remain possible).

• you can edit your script by script: most of
the scriptable features of scripts (described
in the chapter about the advanced scripting
of Smile, Chapter 17) work only on object
scripts.

16.4 Opening a file by script

Like any scriptable application, Smile handles
the open event. Though, it may be more con-
venient in order to open files to use some higher-
level handlers that Smile defines. For instance
open thePath would open a new copy if the
document is already open, while the high-level
handler DoOpen(thePath) will instead bring into
view the already open document.
The high-level handlers for opening files are de-
scribed in Appendix F about Smile’s built-in
routines.

16.5 Providing a GUI — The
Smile dialogs

The dialog class, a sub-class of the window
class, is a special kind of window which supports
the Aqua interface components, the dialog
items, as its elements. How to build, script and
use custom dialogs is described in chapter 15.

Smile includes a standard user interface layer
to build custom dialogs — you use drag and
drop or Copy-Paste from a Palette — and to
launch them — you save and you open custom
dialogs with the standard File menu.
Associating scripts to such a dialog is how you
provide an interface to a script or to a set of

scripts.

16.6 Scheduling tasks

Smile includes a set of features helpful for
scheduling tasks:

smilepause: pauses a script without hanging
the application

idle: when Smile is idle, it sends periodically
the idle event to those windows (i.e.: to
their scripts) whose want idle property is
set to true.

You handle idle with a handler such as:
Example 46
on idle theWindow

-- do whatever suitable
return 3

end idle

idle should return a number. This number
specifies how much time, in seconds, Smile
will wait before sending again idle to the
window.

notify: when used with the with delay op-
tion, notify schedules for a given time in
the future the broadcast of a message to a
given recipient. If the recipient’s script in-
cludes a notify handler, the handler will
receive the message and the sender’s identi-
fication.

Chapter 17

Scripting Smile — Advanced features

17.1 Overview

This chapter is for experts who wish to go still
one step beyond towards automation of tasks. It
describes advanced features. Inappropriate use
of those features may prevent Smile from launch-
ing or documents from opening, and can induce
data loss: proceed with caution.

17.2 Making and editing
scripts by script

The script property of an object returns its
script as a script object (in the strict Apple-
Script sense). If you get it as text then the
script returns the source text of the script. You
can set the script property to any compilable
text.

When you manipulate scripts by script, you
may want to get the source of a compiled script
document. Use exactly the following construct:
get script of file thePath where thePath
is the path to the file, as a string.

You can create and edit dynamically the
handlers of the object scripts:

name of every handler of script of
window 1
handler "foobar" of script of window 1
as text
set handler "foobar" of script of
window 1 to theString
set theHandler to handler "foobar" of
script of window 1
set handler "barfoo" of script of
window 1 to theHandler

You can create and edit dynamically the
properties of the object scripts, using the
variable keyword:
every variable of script of window 1
- - returns the properties and their
values as a record
name of every variable of script of
window 1
get variable "foobar" of script of
window 1
set variable "foobar" of script of
window 1 to anyValue

You can also create on the fly properties to
objects:
set barfoo of window 1 to anyValue
but only the properties created using the

75

76 CHAPTER 17. SCRIPTING SMILE — ADVANCED FEATURES

variable keyword will be returned by the
every variable expression.

Note that the changes made to the handlers
and the properties of object scripts are effective
although they are not viewable when you edit
the script of the object by the normal means.

17.3 The Class scripts —
Defining new classes

17.3.1 An introduction to class scripts

The active Class Scripts folder contains script
files. Each of these files handles the behavior
of one object class of Smile — as described in
more details in Chapter 24. The class script
property, owned by every object, refers to this
script.

When an object has an non-empty object
script, this script has automatically the object’s
class script as its parent.

The object classes support an inheritance
mechanism, as you can see by browsing the
Class entries of the dictionary. For instance,
script window is a sub-class of text window,
itself a sub-class of window. The inheritance
applies to the class scripts: the window class’
class script is the text window class’ class
script’s parent.

Through inheritance, every class is a sub-class
of the same virtual class basic object. The
class script of the basic object is Context.
Thus Context is a common parent to all object
scripts.

You can open a read-only version of the class
script of an object with the EditClassScript
handler.

You can customize the class scripts by using
the same terms as described above for object
scripts, for instance:
set handler "foobar" of class script of
window 1 to theString

Smile uses three class scripts that are special,
the Context script, described above, the appli-
cation’s Class script (Application), and another
special script named Globals. Smile saves the
properties of Globals when you quit Smile. The
properties of Globals are those properties which
are accessed with the my prefix or the of me suf-
fix.

• to refer to the Context script, use the special
keyword context

• to refer to the Globals script, use the special
keyword globals

• to refer to the Application script, use class
script of me

17.3.2 Creating custom classes

Class scripts can be used as libraries, where
you store handlers which will be available from
any object of some given class. You can use
the existing class scripts to store your personal
handlers, if you know what you are doing.

You can also create dynamically new classes,
and attach class scripts to them. Smile lets
you create classes dynamically (i.e., by script),
attach class scripts to them, which can have

17.3. THE CLASS SCRIPTS — DEFINING NEW CLASSES 77

another class script as their parent, and that
way create your own hierarchical system of
classes.

This system of custom class scripts is intended
for defining and using easily custom libraries of
scripts in objects of Smile.

Here are the steps to follow to create a new
class:

1. Write the library script. Save this script
preferably in the Class Scripts folder. In
the following, suppose you save it as the My-
Class file.

2. Make the new class: create a new object of
class class script. You need to provide
the following information:

• the class script property, a 4-
characters code

• optionally a parent property, another
class, or its 4-characters code if that
parent property is itself a custom class

• the path name property, the path to
the new class script. If the file is lo-
cated in the Class Scripts folder, just
provide the file name

Example 47
make new class script with
properties {class script:"MyCl",
parent:text window, path
name:"MyClass"}

Here the new class inherits from the
text window class.
You can now create and open documents

of the ”MyCl” class: they will be provided
with MyClass as their class script.

3. Create documents with the new class.
To create a text window with the new class,
run :
make new text window with properties
{class script:"MyCl"}

To turn a standard text window (theWind,
here) into a window of the new class, run:
set class script of theWind to
"iTxt"

When you save it, the document keeps its
custom class script property.

4. Create a class when Smile launches, so that
next time Smile is launched it recognizes
automatically documents belonging to the
new class. Save the one-liner script that
creates the new class:
make new class script with
properties {class script:"MyCl",
parent:text window, path
name:"MyClass"}

as a script document in the Initialization
folder of the More stuff folder.

Chapter 18

About Smile’s libraries

18.1 Overview

Several of the subsequent chapters present
the extensions to the AppleScript language
that Smile offers. This chapter enlightens
where those different extensions really “live”.
Together, these extensions sum to what is called
below Smile’s “libraries”.

Two categories of extensions are available to
your scripts. First, Smile offers the commands
that can be found in its dictionary; more
commands can be found in the dictionary of
the Satimage osax, Smile’s companion Scripting
Addition.
The second category gathers handlers which
are available to Smile’s context. By different
means that are described below Smile defines
a number of handlers at launch time. Since
Smile’s context is persistent, your scripts can
use these handlers. Yet, they are not declared
in an AppleScript dictionary.

More precisely, Smile’s libraries are made of
the following resources:

Smile’s dictionary

Satimage osax’ dictionary

Smile’s routines: routines that are included in
the Context or the Application scripts,
that Smile compiles into its context at
launch time

Context additions: routines that are de-
fined in the files located in the Class
Scripts/Context additions directory, and
that Smile compiles also into its context at
launch time.
Thus, some of the routines may require a
specific installation.

18.2 Documentation about
Smile’s libraries

The chapters below give a thematic presentation
of Smile’s libraries. Under each theme, we give:

• the concerned commands and handlers

• for each of those, a summarized description

• a hypertext link to the entry in the corre-
sponding Appendix

• additional detailed information when useful

At the end of the Manual, separated Appen-
dices provide the lists of the commands and

78

18.2. DOCUMENTATION ABOUT SMILE’S LIBRARIES 79

handlers that can be found in Smile’s dictionary,
in the Satimage osax, in Smile’s routines, and
in the Context additions. These Appendices
are where you find the syntax of each term:
the syntax of the commands and handlers is
not fully provided in the subsequent chapters,
furthermore the latter are not exhaustive.

Chapter 19

General purpose library

19.1 Strings

Short description

• find text: find text literally or using reg-
ular expression syntax.

• change: replace all occurrences of a sub-
string

• re compile: compile a regular expression

• extract string: extract a substring out of
a string.

• uppercase: move to uppercase.

• lowercase: move to lowercase.

• converttext: convert between encodings
that you specify as integers or as strings

• textencodings: provides the encodings
available as integers or as strings

• convert to Windows: converts a Mac
string into a Windows string

• convert to Mac: converts a Windows
string into a Mac string

• make new name: supplies a unique name in
the form YYMMDD HHMMSS

• format: format a real number using a spec-
ification string. Ex: format pi into ”##.##”-
>”3.14”. ”0” instead of ”#” forces trailing
zeros. ”^” adds a space. ”+f1;-f2;f3” pro-
vides formats for numbers >0, <0, =0. En-
capsulate custom strings with ”’”.

• special concat: append a new column to
an array given in text format

• extractcolumn: extract columns from an
array

Comments

• find text and change: if called from
Smile, find text and change support as
their in parameter — in addition to strings
— a reference to a window of Smile, or a
reference to any range of text in a window
of Smile.
Example 48
change ":" into "/" in first
paragraph of selection of window
1

Regarding how to describe a range of
text of a window, see Chapter 13 about

80

19.1. STRINGS 81

Smile’s Text Suite.

find text and change also support a file
as their in parameter. If change is called
with a file as its in parameter, the file re-
mains unchanged and change returns the
new string.

• special concat: special concat ap-
pends a new column to an array given in
text format. The direct parameter should
be a string representing an array with
tab-delimited columns and return-delimited
rows. The with parameter is the column to
append, formatted into a return-delimited
string. special concat will return the ar-
ray with the new column appended, as a
string.

• extractcolumn: if the in parameter is a
table given as a string delimited with tab
and return, extractcolumn will return
the required column(s) as text.

You specify a range of columns with the
direct parameter and the to parameter:
Example 49
extractcolumn 2 to 4 in theTable

You specify a set of non necessarily
contiguous columns by supplying a list as
the direct parameter:
Example 50
extractcolumn {2, 4} in theTable

If you specify a non-existing column
index, extractcolumn returns a column of
empty strings.

Requesting the result as list provides
additional possibilities, as described now
with an example.

Let theTable be the following string:
Year Inc. %
2018 708 .3
2019 712 .6

– To get the list of the items as strings,
request the result as list:
Example 51
extractcolumn {1, 2} in theTable
as list
-- {"Year", "Inc.", "2018",
"708", "2019", "712"}

– To get the list of the columns as lists
of strings, provide the column indices
as one list of lists:
Example 52
extractcolumn {{1}, {2}} in
theTable as list
-- {{"Year", "2018", "2019"},
{"Inc.", "708", "712"}}

– To get the list of the rows as lists of
strings, provide the column indices as
one list of one list:
Example 53
extractcolumn {{1, 3}} in
theTable as list
-- {{"Year", "%"}, {"2018",
".3"}, {"2019", ".2"}}

82 CHAPTER 19. GENERAL PURPOSE LIBRARY

Instead of providing a tabulated string as
the in parameter, you can provide the table
as the list of the rows as lists of strings:
Example 54
set theTable to {{"Year", "Inc.",
"%"}, {"2018", "708", ".3"},
{"2019", "712", ".6"}}

in which case the default behavior is
as list: you must specify as string if
you want the result as one tabulated string.

See also the use of extractcolumn to gener-
ate arrays of numbers in the chapter about
Mathematical libraries.

• make new name: supplies a unique name,
based on the current time and date, under
the form YYMMDD HHMMSS. If several
calls are issued in the same second, make
new name still provides different names.
Files which are named with make new name
assume the chronological order of their cre-
ation dates when listed alphabetically.

• format: the formatting string for the
format command consists of the following
metacharacters:

#: stands for an optional digit

0: stands for a required digit

^: stands for a required digit, but format
prints spaces instead of the leading
and trailing zeros

. (period): indicates the location of the
(optional) decimal separator
Examples 55
format 3.14 into "###.000"
-- "3.140"
format 3.14 into "000.#"

-- "003.1"
format 3.14 into "^^^.#"
-- " 3.1"

+, -, (and) : stand literaly for themselves

Examples 56
format 3.14 into "(+###.000)"
-- "(+3.140)"
format -3.14 into "(+###.000)"
-- "-(+3.140)"

+ and - really make sense when
used with the following metacharac-
ter:

; (semi-colon): as you can observe on the
latest example, format just prepends
a - minus sign for negative numbers.
Alternately you can provide a different
formatting string for negative numbers
using the ; metacharacter. To do so,
specify a formatting string in the form
f1;f2;f3: the substrings f1, f2 and
f3 being the formatting strings for the
positive, negative and null numbers
respectively.
When you specify such a kind of
formatting string it becomes your
responsibility to display the sign or
not: use + and -.
Examples 57
format 3.14 into
"+00;(-#0.00);#"
-- "+03"
format -3.14 into
"+00;(-#0.00);#"
-- "(-3.14)"
format 0 into "+00;(-#0.00);#"

19.2. LISTS AND RECORDS 83

-- "0"

To customize further the formatting
string, use the following metacharac-
ters:

’ (non-smart single quote): encapsulates
any string
Examples 58
format 3.14 into "+00;’ALERT !
LEVEL ’-00.00;’(empty)’"
-- "+03"
format -3.14 into "+00;’ALERT !
LEVEL ’-00.00;’(empty)’"
-- "ALERT ! LEVEL -03.14"
format 0.0 into "+00;’ALERT !
LEVEL ’-00.00;’(empty)’"
-- "(empty)"

%: displays the number as a percentage.
Example 59
format 0.14 into "###.0’ ’%"
-- "14.0 %"

19.2 Lists and records

Short description

• special concat: concatenate {a ppty: X,
...} and {a ppty: Y, ...} into {a ppty: Z, ...}
where Z is the union X & Y if X and Y are
lists, and where Z is the sum X + Y if X
and Y are numbers.

• suppress item: delete an item from a list
or a record.

• extractcolumn: can make tabulated
strings into lists, and it can handle ta-
bles provided as lists: see the entry for
extractcolumn in the section about string
manipulation.

• sort: recursive sort.

• heapsort: non-recursive sort.

Comments

• suppress item: if the from parameter is a
list then the direct object of suppress item
has to be an integer, the index of the item
that you want to suppress. If the from pa-
rameter is a record then you can specify as
the direct object a quantity of the following
classes:

– an integer, the index of the item that
you want to suppress.
Example 60
suppress item 1 from
{pencils:0, erasers:3}
-- {erasers:3}

– a string, to suppress an item provided
with a user-defined label.
Example 61
suppress item "pencils" from
{pencils:0, erasers:3}
-- {erasers:3}

– a four-character string, to suppress an
item provided with a raw-code label.
Example 62
suppress item "penc" from

84 CHAPTER 19. GENERAL PURPOSE LIBRARY

{�class penc�:0, �class
eras�:3}
-- {�class eras�:3}

– a keyword — with no quotes — to
suppress an item provided with that
keycode as its label.
Example 63
suppress item menu from
{menu:"Foie gras frais",
price USD:25}
-- {price USD:25}

• heapsort and sort differ on the following
points:

– sort is recursive, heapsort is not: you
will not hit any Stack overflow issue
with heapsort, while you may hit one
if you use sort on very large lists.

– heapsort is slightly slower on the aver-
age than sort, but its execution time
is essentially independent on the order
of the list in input. On quasi-ordered
lists (resp. on particularly randomized
lists) sort is faster (resp. much slower)
than heapsort.

– heapsort can easily be changed to per-
form a partial (and faster) ordering: if
you replace the n variable in the first
repeat by a smaller value m, the list
returned by heapsort will have the m
lowest values, properly sorted, as its m
first values, the rest of the list will con-
tain the larger values, not sorted.

You can customize both heapsort and sort
e.g. if you need to implement a custom or-
dering rule. The source of those handlers
is in the Class scripts/Applications script
file. If you copy then customize and rename
the sort handler, it is important that you
change also the calls to sort which are in
sort’s source.

19.3 Files and resources

Short description

• remote info for: locate an alias on the
network

• list files: the list of the files contained
in the folder

• backup: synchronizes 2 folders.

• read binary: read a file of real or small
real

• write binary: write the data into a binary
file of small real (4 bytes per number)

• load resource: get the resource of the
given type and id from the specified file

• list resources: return the list of the ids
of the resources of the specified type stored
in the specified file

• get resource name: return the name of
the resource of the specified type and id
from the specified file

• put resource: write the given resource to
the specified file with specified type and id

19.5. USER INTERACTION 85

Comments

• backup: backup resolves the aliases located
at the first level of the source folder and of
the destination folder, and it does not re-
solve the aliases located deeper. Thus, you
may fill the source folder with aliases to the
original folders that you want to backup. In
the destination folder, you will put aliases
to the copies, that need to be synchronized,
supplying to each alias the same name as the
corresponding alias to an original folder.

• put resource: put resource stores the
data that you provide, not their class. In or-
der to specify the class of the data, provide
a name to the new resource with the with
name parameter. That name has to be the
4-characters code for the class. Later when
you load the resource into an AppleScript
variable using load resource, Smile will
attempt to coerce the data contained in the
resource into the class whose 4-characters
code can be found as the resource’s name.
A trick to find out the 4-characters code of
a given class is to apply display dialog to
it, e.g. display dialog integer.

19.4 Scripts

Short description

• execute: run the script of a script window

• check syntax: check syntax of a script win-
dow

• do script: execute a script

• display: return the direct object as a string

• find definition for: retrieves the dictio-
nary that contains a given term.

Comments

• do script: performs essentially the same
action as the Standard Additions’ run
script command, but unlike the latter you
can request the result of do script as
text.

• display: display will return the direct
parameter as a string, even if applied to
a quantity that cannot be coerced into a
string. For instance you may use display
to parse records when you do not know
what labels it may contain.
do script and display are somehow
inverse operators of each other.
Example 64
display {age: 33}
-- "{age: 33}" -- a string
do script "{age: 33}"
-- {age: 33} -- a record

19.5 User interaction

Short description

• navchoose file: choose file with Naviga-
tion Services

• navchoose folder: choose folder with
Navigation Services

• navchoose object: choose file or folder
with Navigation Services

• navchoose volume: choose volume with
Navigation Services

• navask save: prompt for save

86 CHAPTER 19. GENERAL PURPOSE LIBRARY

• navchoose file name: get a new file spec-
ification from the user, without creating the
file. Uses Navigation Services

• navnew folder: get a new folder specifica-
tion from the user. Uses Navigation Services

• choose color: choose a color with the
color picker

• smilepause: pauses a script without hang-
ing the application

• chrono: returns the time elapsed since the
last call to chrono (seconds)

• modifiers: returns the list of the modifiers
keys which are being pressed

• mouse location: returns the mouse loca-
tion as the list of the two coordinates. The
origin is the upper left corner.

• mouse button: returns the state of the
mouse button

• menu and menu item: two classes intended
for customizing Smile’s menu bar

• FatalAlert: display an alert box with the
Stop icon and one OK button

• dd: display an alert box with the Note icon
and one OK button

• AskUser: request an input from the user

• quietmsg: prints to Smile’s Console

• msg: prints to Smile’s Console and brings
the Console into view

• DoOpen: open any file or reveal its window
if the file is already open

Comments

• smilepause: smilepause x suspends the
execution of the script for x seconds. Dur-
ing that pause, Smile is fully responsive:
you can use your computer normally.

By default, two keys have a special action
while the script is paused with smilepause:
the esc key triggers a User canceled error
(error number -128), while the → (right
arrow) key just exits smilepause, resuming
execution of the script.
If you set the �class unti� parameter
(not presented in the dictionary) to false,
then those keys have no special effect, and
there is no way of exiting the pause before
it is elapsed: smilepause 3 without
�class unti�

Typical uses of smilepause include the fol-
lowing:

– inserting smilepause 0 in a loop
brings three advantages: 1. the inter-
face remains responsive while the loop
is executing, 2. more graphical up-
date can take place (e.g., update of the
progress bars and of the chasing ar-
rows), 3. you can interrupt the loop
by typing the esc key.
Note however that while the loop is ex-
ecuting, the → (right arrow) key does
not work as usual since smilepause in-
tercepts the right arrow keystrokes.

– if you use Smile to present a slide show
(for instance, SmileLab plots) you can
use long smilepause’s to have the
show run alone. To switch to the next
slide press the → (right arrow) key. To

19.5. USER INTERACTION 87

terminate the show press the Esc key:
this will trigger a User canceled error
(that your script may handle).

– you may want to display a message for
a few seconds only: use smilepause
without �class unti�. While the
message is being displayed, the com-
puter is fully responsive and all keys
work as usual.

While some script is paused with
smilepause, you can do any action,
such as selecting a menu or typing.
In particular, you can launch another
script. The execution of that other script
will take place “inside” the pause: the
pause itself is suspended until the second
script returns. Therefore, the second script
will return before the first one.

• chrono, modifiers, mouse location and
mouse button: these quantities are proper-
ties of Smile, they are documented in the
entry about the application class in the
dictionary of Smile.

• menu and menu item: you change the
keyboard shortcut associated with a menu
item by editing two properties of the menu
item class: shortcut and modifiers.
By default, shortcut is the key which,
in conjunction with the apple key, will
activate the menu item.
When you set the modifiers property of
some menu item, the apple key is assumed
even if you don’t specify it in the list.
Though, it you set the modifiers property
of some menu item to a list that contains
”no command” as one of its items, then
the keyboard combo will no longer include

the apple key. This way, you can map
directly one key of the keyboard to one
menu item — use this feature with caution.
For instance if you execute:

Example 65
set modifiers of menu item "Save" of
menu "File" to {"no command"}

then each time the user types S the
front window will get saved.

Usually, if you customize the menus and the
menu items, you will store a script which
does so in the More stuff/Initialization
folder, so that it runs when Smile opens.

• quietmsg and msg: insert quietmsg in your
scripts when you want to print any useful in-
formation such as intermediate results, and
use msg when some information may require
the user’s attention.

Chapter 20

Mathematical library

20.1 Functions

Short description When it makes sense, the
mathematical functions support as their direct
parameter (and return) a list of numbers or an
array of real (a class defined in the Satimage
osax). Angles are in radian.

• abs

• acos

• acosh

• asin

• asinh

• atan

• atan2: atan2 (y, x)

• atanh

• cosh

• cos

• erf

• erfc

• exp

• gamma

• hypot

• lgamma

• ln

• log10

• sin

• sinh

• sqr

• sqrt

• tan

• tanh

Comments Keep in mind that AppleScript
really defines commands with direct parameters,
not functions. So a correct syntax is:
Example 66
sin pi

Here, adding parentheses may be mislead-
ing:
Example 67

88

20.2. LISTS AND ARRAYS OF NUMBERS 89

sin (pi) / 4

will really first compute the ratio pi / 4,
then apply the sinus, exactly like:
Example 68
sin (pi / 4)

Thus, parentheses may be required around
the command itself:
Example 69
(sin pi) / 4

20.2 Lists and arrays of num-
bers

Short description

• array of real: a packed list of small real

• multlist: performs the product of the pa-
rameters. Each parameter may be a list
of numbers, an array of real, or a single
number e.g. multlist thePolygon with
theScaling

• divlist: quotient

• addlist: sum

• sublist: subtraction

• statlist: returns the min, max, min’s in-
dex, max’ index, mean, standard deviation.

• reversearray: reverse

• replacemissingvalue: replace the
missing value’s and the NAN’s

• read binary: read a file of real or small
real

• write binary: write the data into a binary
file of small real (4 bytes per number)

• extractitem: extracts a sub-array

• creatematrix: create an array of real of
size ncols*nrows

• extractcolumn: extract columns out of a
2D array provided as a string

Comments

• array of real: The Satimage osax defines
one class of data, array of real, and a set
of operators which work with that class. An
array of real is logically equivalent to a
list of real numbers but it is more reliable
and faster: you should use arrays of real
to compute with large lists or when speed is
an issue.
The operators for lists work both on regular
lists of numbers and on arrays of real.
To coerce an array of real into a regular
AppleScript list of real numbers, request it
as list of real. To make a list of real
numbers into an array of real, use as
array of real.
Those coercions work also between one list
of lists of numbers and one list of arrays
of real.

• multlist, divlist, addlist, sublist
and statlist: In addition to lists of real
numbers and on arrays of real, those
operators accept lists of strings — provided
the strings represent numbers. You can use
those operators to convert a list of strings

90 CHAPTER 20. MATHEMATICAL LIBRARY

into a list of real:
Example 70
addlist {"1", "2"} with 0
-- {1.0, 2.0}

• extractcolumn: extractcolumn’s basics
are described in the section about string
manipulations.
You can request the result of
extractcolumn as real or as array
of real. The features described with as
list extend to real numbers:

– if you use the i to j construct or the
{i, j, etc.} construct to specify the
columns, extractcolumn will return
one list of numbers or the list of the
columns as arrays of real.

– if you specify the columns in the form
{{i}, {j}, etc.}, extractcolumn
will return the list of the columns
as lists of numbers or as arrays of
real.

– if you specify the columns in the form
{{i, j, etc.}}, extractcolumn will
return the list of the rows as lists of
numbers or as arrays of real.

The non-numbers result in missing value
items (the array of real class supports a
missing value).

Chapter 21

RS232 library

21.1 Overview

Smile’s RS232 library allows you to control by
script the Keyspan USB/RS232 adaptors. By
script, you configure the RS232 serial links and
you receive and you send characters. To con-
trol the serial link, you will create one or several
instances of the RS232 class.

21.2 Instructions of use

Here is how you would use the RS232.

1. Install the driver software that ships with
the adaptor

2. Plug the USB connector of the adaptor into
your machine

3. Launch Smile

4. From any text window, run serial ports
(serial ports is given in the dictionary as
a property of the application). This will re-
turn a list of lists of three items. Each of
the lists provides information regarding one
of the serial ports available on your machine.
The three items are: a number that identi-
fies the kind of the port, a UNIX path name,

and the name of the port. One of thoses
lists with 9 as their identification number
refers to the Keyspan adaptor: select a list
whose name includes neither ”modem” nor
”IrDA”. You will use information from that
list that you have selected.

5. Make a new instance of the RS232 class
and provide it with the UNIX path you
got with serial ports as its configname
property:
Example 71
set theRS to make new RS232
with properties {configname:
theUNIXPath}

6. Activate the RS232 by setting its enabled
property to true:
Example 72
set enabled of theRS to true

7. Configure the RS232 by setting its
RSOptions property. Provide a record as
described in the dictionary at the entry

91

92 CHAPTER 21. RS232 LIBRARY

about Class RSOptions, for instance:
Example 73
set RSOptions of theRS to {bauds:
9600, databits: 8, stopbits: 1}

8. To send characters set the contained
data property of the RS232:
Example 74
set contained data of theRS to
"hello world"

9. To receive characters get the contained
data property of the RS232:
Example 75
try

set theBytes to contained data
of theRS
on error -- nothing was received

set theBytes to ""
end try

This reads and resets the RS232’s re-
ceiving buffer.

Chapter 22

Digital I/O library

22.1 Overview

Smile’s Digital I/O library allows you to control
by script the Delcom USB/Digital I/O board.
By script, you write to and you read from digital
(TTL) outputs and inputs via the board. No
additional software is needed: Smile includes the
USB driver for the Delcom board. Each of the
two ports (8 lines each) can work as an output
port or an input word. You can plug several
boards to get more lines.
Typically you connect the input lines to opto-
couplers and the output lines to electrical relays.

22.2 Instructions of use

1. Plug in the USB connector of the Delcom
board into your machine

2. Create a new instance of the Delcom USB
Board class

3. To write to output lines, set the contained
data property of a given port (you set 8
bits in one command) or the contained
data property of a given bit:
Example 76
set theIO to make new Delcom USB

Board
set contained data of bit 8 of
digital port 2 of theIO to 1

4. To read inputs, get the contained data
property of a given port (you get 8 bits
in one command) or the contained data
property of a given bit:
Example 77
get contained data of digital port 2
of theIO

93

Chapter 23

PDF library — The Graphic Kernel

23.1 Overview

The PDF generation library allows you to make
PDF records (strings, actually) that represent
vectorial drawings. PDF records can be saved
as PDF files, they can be displayed in “Graphic
windows” — which can be saved as PDF files
— and also in Custom dialogs.

The PDF generation library is expandable.
You can write your own high-level graphic li-
braries and make them available to your scripts.
One example of such a library (GeomLib) is in-
cluded in the standard distribution of Smile.

23.2 Producing a graphic in a
window

23.2.1 The basics

When you write a script in order to produce a
graphic in a window, your script should do the
following:

• create a window — this is optional, Smile
can do it for you

• reset it for drawing, by calling BeginFigure

• define the drawing, using the graphic func-
tions described below in this chapter

• instruct the window to realize the drawing,
by calling EndFigure

Example 78
BeginFigure(0)
CirclePath({250, 250}, 2)
DrawPath(1)
EndFigure()

The distribution of Smile includes more
examples. The examples are scripts provided as
text files. If you are not familiar with executing
scripts from text windows you may want to read
chapter 4.

• To move the image drag it while holding the
option (alt) key down.

• To resize the image’s frame (not the win-
dow’s frame) drag its right bottom corner.
When you export or save the image as a
PDF, the PDF will assume that frame as
its size.

94

23.3. THE BASICS OF THE PDF LANGUAGE 95

• To save the image as a PDF file, use the
Save item of the File menu.

• To save the image as a TIFF file, use the
Save item of the File menu, and provide the
.tiff extension to the new file’s name.

23.2.2 The graphic window

Since drawing occurs in a graphic window, one
has to make a new graphic window.
If one graphic window is enough for your
purposes, if you want to perform a drawing
on the fly, just call BeginFigure with the 0
parameter. Smile will create automatically the
graphic window if needed. It will then always
use that same window upon new BeginFigure
(0) calls, not clogging your screen space as you
perform successive trials.

If you want to make multiple windows, or if
your script requires a reference to the graphic
window, create it yourself, and then pass its
reference to BeginFigure:
Example 79
set theWind to make new graphic window
with properties {name: "Tiny dot"}
BeginFigure(theWind)
CirclePath({250, 250}, 2)
DrawPath(1)
EndFigure()

23.2.3 The graphical objects

The instructions given above do realize one
static drawing in a graphic window. The draw-
ing is really a property of the graphic window,
it is not an object. For a more dynamical

behavior, you will define graphical objects.

Smile defines a generic graphical object,
the picture view, an element of the graphic
window. The picture view provides a way for
performing basic animations. Below we describe
how to have a picture view display some
graphics and how to use it to perform animated
graphics.

The SmileLab section of Smile’s dictionary de-
fines several graphical objects that are special-
ized in representing numerical data. SmileLab’s
features are documented in a separate documen-
tation that ships with the SmileLabSet package,
a separate download.

23.3 The basics of the PDF lan-
guage

PDF handles “graphic states”, “paths” and text.
PDF draws the paths and draws the text, accord-
ing to the current graphic state.

23.3.1 The paths

A path is a sequence of drawing commands
which may contain lines, moves, arcs, beziers
etc... In order to make the drawing effective you
must call the DrawPath handler (see G.3.1).

Example 80
Moveto({0, 0})
LineTo({100, 150.1})
DrawPath(2) -- 2 = stroke

draws a line with the current pencolor,
penwidth and dashpattern.
The coordinates are real numbers, and by

96 CHAPTER 23. PDF LIBRARY — THE GRAPHIC KERNEL

default the unit is one point = 1/72 inch. The
default origin is the bottom left corner.

23.3.2 The Graphic State

The graphic state includes the current prop-
erties (penwidth, colors, transformations, text
font & size, ...) which will be used when you
invoke the DrawPath or DrawText functions. If
a block of lines changes the graphic state, you
may want to bracket it between SaveState()
and RestoreState().

Example 81
SaveState()
Moveto({0, 0})
LineTo({100, 150.1})
SetPenGray(0.5)
SetDashPattern({0, 2, 4})
SetPenWidth(0.8)
DrawPath(2)
RestoreState()

draws a gray dashed line without corrupt-
ing the current graphic state.

Example 82
SaveState()
SetTransformation({20, 10} & {30, -60} &
{100, 100})
CirclePath({0, 0}, 1)
RestoreState()
DrawPath(2)

draws an ellipsis centered at {100,100}
with axis {20,10} and {30,-60}. Here we need
to call SaveState-RestoreState in order to
restrict the transformation to CirclePath. Call-

ing DrawPath before RestoreState would result
in the penwidth undergoing the transformation,
whence a huge stroke.

23.4 The graphic commands

Graphic commands, examples of which were
given above, are the commands which do define
the drawing. They are documented in a separate
Appendix G. The Graphic Kernel Quick Reference
item of the Help menu provides a short and con-
venient reminder of the graphical commands of
Smile’s PDF library.

23.5 Producing PDF data

23.5.1 The basics

You can produce PDF data (a “PDF record”)
without creating first a graphic window. Here is
what you can do with a PDF record:

• you can save it as a PDF file

• you can append it to an existing PDF file

• you can give it to a graphic window as its
background picture or as its foreground pic-
ture. This is particularly intended for final-
izing graphics produced with SmileLab

• you can display an animation in a graphic
window

• you can display it in a custom dialog

To produce a PDF record, your script should
do the following:

• specify the size of the PDF and ini-
tialiaze the new PDF by calling
BeginPDF(theRect)

23.5. PRODUCING PDF DATA 97

• define the drawing, using the graphic func-
tions described in this chapter

• realize the PDF record by calling EndPDF
which returns the PDF record, a string

When you call BeginPDF(theRect), theRect
specifies the coordinates x and y of the bottom
left corner and the width and height of the
PDF’s frame:
{x, y, theWidth, theHeight}.
Example 83
BeginPDF({0, 0, 100, 100})
CirclePath({50, 50}, 2)
DrawPath(1)
set thePDF to EndPDF()

The string returned by EndPDF() is a PDF
record: it begins with %PDF.

23.5.2 Producing a PDF file

Usually, to make a PDF file, you make a drawing
in a graphic window as described above, then
you save the window to disk. Alternately, you
can make a PDF file without using a graphic
window:

• make the additional PDF record as de-
scribed just above

• write the PDF record to a new file using the
standard write command

• set the type of the file to PDF using the
Finder’s dictionary

23.5.3 Appending PDF to a PDF file

To add some graphics to an existing PDF docu-
ment proceed as follows:

• using the Open item of the File menu, open
the PDF file. This will open a new graphic
window.

• make the PDF record as described just
above

• set the front pdf property of the graphic
window to the PDF record

• force the display of the new data with draw
front pdf of theWind, where theWind
contains a reference to the graphic window

• save the graphic window

You can build the PDF by successive pieces:
by default, setting the front pdf property (or
the back pdf property) appends the new data
to the existing data rather than replacing the
existing data. To erase the previous data you
must explicitly reset the property, e.g.:
set front pdf of theGraphicWindow to ""
set front pdf of theGraphicWindow to
thePDF

23.5.4 Setting the background or the
foreground picture of a Smile-
Lab plot

SmileLab is a library intended for making 2D
and 3D representations of numerical data. Such
SmileLab plots occur in graphic windows. To
add some graphics into the background or the
foreground picture of a graphic window proceed
as follows:

• make the PDF record as described above in
this section

• set the front pdf property (or the back
pdf property) of the graphic window to the
PDF record

98 CHAPTER 23. PDF LIBRARY — THE GRAPHIC KERNEL

• force the display of the new data with draw
front pdf of theWind (or draw back
pdf of theWind) where theWind contains
a reference to the graphic window

• you may then save the graphic window

23.5.5 Displaying an animation in a
graphic window

Your script can use a loop to generate
successive PDF records as described above,
with graphic commands bracketed between
BeginPDF(theRec) and EndPDF(). To display
successive PDF records as an animation, proceed
as follows:

• before entering the loop, create a new
graphic window

• in the loop, provide the PDF record to the
graphic window as its back pdf property
(you can use the front pdf as well). This
will add the new drawing to the window
without suppressing the previous one: do
so, e.g., to draw a trajectory. To suppress
the previous drawing before displaying the
new one, reset the back pdf property to the
empty string "" before setting it to the new
PDF record.

• in the loop, force the display of the new
drawing with draw back pdf of theWind,
where theWind contains a reference to the
graphic window

picture views, described below, are often a
better candidate to perform animations.

23.5.6 Displaying graphics in a pic-
ture view

The picture view is an element of the graphic
window. You can have a picture view dis-
play a PDF record that was generated as de-
scribed above, with graphic commands brack-
eted between BeginPDF(theRec) and EndPDF().
To have a picture view display a PDF record,
proceed as follows:

• create a new graphic window

• create a new picture view in the graphic
window

• set the picture view’s frame property, a
list of four numbers. The two first numbers
are the location of the bottom left corner
with respect to the graphic window’s frame.
The two last items are the size of the dis-
played graphics. The PDF will be rescaled
to fit that size.

• set the picture view’s contained data
property to the PDF record

• refresh the display by calling draw theWind,
where theWind contains a reference to the
graphic window

23.5.7 Displaying animated graphics
with picture views

The picture view can handle the following ef-
fects:

resize : to resize a picture view change the
two last items of its frame property. The
PDF will be scaled to fit the new size.

move : to move a picture view change the
two first items of its frame property.

23.6. ADDITIONAL INFORMATION AND EXAMPLES 99

hide/show : change its visible property

To refresh the display use the draw verb. Usu-
ally you apply it to the graphic window, so as to
refresh the full graphic. For specific purposes
you can apply draw to the picture view: this
will draw the new state of the picture view but
will not erase its previous state.

Example 84
set theRect to {0, 0, 20, 20}
BeginPDF(theRect)
SetFillColor({0, 0, 0.75, 1})
RectPath(theRect)
DrawPath(0)
set thePDF to EndPDF()

set theGW to make new graphic window
set thePV to make new picture view at
end of theGW
set thePV’s frame to theRect
set thePV’s contained data to EndPDF()

set {x0, y0, x1, y1} to theGW’s frame
set x to x0 + (random number of x1)
set {y, dy} to {y0 + y1, -1}
repeat while y > y0

set thePV’s frame to {x, y, 2, 10}
draw theGW
set {y, dy} to {y + dy, dy - 4}

end repeat
set thePV’s frame to {x - 6, y0, 14, 3}
draw theGW -- splatz

23.5.8 Displaying graphics in a cus-
tom dialog

To display graphics in a custom dialog, use the
PDF Holder dialog item provided in the Palette.
The operation is described with more details in
the chapter about custom dialogs (Chapter 15).
Basically, proceed as follows:

• to have the PDF Holder display an existing
PDF document, use the contextual menu on
the PDF Holder in edit mode

• to have the PDF Holder display a PDF
record which was produced as described in
the present section, make a PDF record then
set the �class PDF � property of the PDF
Holder to the PDF record

• force the display of the new data with draw
theDialog where theDialog contains a ref-
erence to the dialog that contains the PDF
Holder.

23.6 Additional information
and examples

23.6.1 How Smile’s PDF engine really
works

Smile’s PDF engine is transparent and versatile.
You can customize it in order to fit specific needs,
provided you know how it works:

• the commands that you call belong to the
Graphic Kernel, a library located in the
Class scripts/Context additions folder. If
you know what you are doing, you can make
changes to that library and recompile it in
a text window. Or, you can add your own
libraries in the Class scripts/Context addi-
tions folder.

100 CHAPTER 23. PDF LIBRARY — THE GRAPHIC KERNEL

• when your script calls BeginFigure or
BeginPDF, Smile essentially resets the global
string stored in my gstr to the empty string
"". These commands also reset some de-
fault settings, namely the shapes of the ar-
row and of the cross.

• each time your script calls a graphic com-
mand, Smile appends new lines to the global
string my gstr. The contents of my gstr is
really a source program for generating PDF,
written in such a language as to support dy-
namical addition of commands — which is
not the case for the regular PDF format.

• when your script finally calls EndFigure or
EndPDF, Smile compiles the source program
contained in my gstr into a PDF record:
EndFigure will display it in the graphic win-
dow while EndPDF will simply return the
PDF record (a string). To compile the
source PDF program, those handlers call
makePDF, a verb that belongs to Smile’s dic-
tionary.

• it was stated above that you can provide a
PDF record as the back pdf property (or as
the front pdf property) of a graphic win-
dow. Actually those properties also accept
uncompiled source PDF programs, in other
terms the string stored in my gstr.

• when you use the back pdf and front pdf
properties of graphic windows, keep in mind
that the graphics is really realized in the
window only once you have called draw with
those properties as its argument e.g. draw
back pdf of theWind.

• it was described above how to save a PDF
record as a file. Alternately, you can

use makePDF to make directly an uncom-
piled source PDF program (not a PDF
record) into a PDF file. With makePDF you
can make a PDF file without creating any
graphic window.

• unlike the back pdf and front pdf proper-
ties of graphic windows, the �class PDF �
property of custom dialogs accepts only
PDF records — that is, not uncompiled
PDF source.

23.6.2 Additional resources

For more information, you should explore the
source files:

• the basic functions are defined in the
file Smile folder:Class Scripts:Context addi-
tions:Graphic Kernel. This file defines an
interface to most of PDF graphic features.

• the Smile folder/Class Scripts/Context ad-
ditions/GeomLib file provides an example of
a 2D library for drawing 2D geometrical fig-
ures as can be found in school books. This
file includes useful handlers intended for cre-
ating mathematical drawings.

Class Script/Context additions is a special
folder for Smile. Any text or script file located
inside this folder is loaded at startup, making
the handlers that it contains available for
scripting. Adding your own libraries into the
Class Script/Context additions folder is how
you customize your scripting environment.

Changes made to a text file located in the
Class Script/Context additions folder will be
effective immediately - provided you compile it
once changed, while changes made to a script file
located in the Class Script/Context additions

23.6. ADDITIONAL INFORMATION AND EXAMPLES 101

folder are effective when Smile is relaunched.
Thus, if you want to develop a library, you
should work on text files. You will compile them
into script files when your project is final.

Chapter 24

Smile’s folders

24.1 The roles of Smile’s fold-
ers

To run properly, Smile requires to locate at
launch time two special folders: Class scripts and
More stuff. Those special folders contain them-
selves other special folders. Here is briefly what
each special folder is for:

• Class scripts
contains the class scripts of the objects of
Smile, including the script of the applica-
tion itself. The class scripts are described
in section 17.3.

• Class scripts/Context additions
script or text files stored in that directory
are compiled into Smile’s global context
when Smile is launched. Storing a library
as a text file in the Context additions folder
is how you make it available to any script
running from Smile.

• More stuff
contains all the auxiliary files needed by
Smile at one moment or another, such as
for instance the Find dialog or the stationery
applet.

• More stuff/Initialization
script or text files stored in that directory
are executed when Smile is launched. Stor-
ing a script in the Initialization folder is how
you have a script execute at launch time.

• More stuff/Documentation
text files stored in that directory are dis-
played in the Help menu of Smile — in ad-
dition to the Smile Help item — and can be
opened via that menu.

• More stuff/SmileLabTemplates
contains the default settings of the objects
of SmileLab, stored as p-lists. Although
those settings are not yet documented, you
can edit most of them, since the p-list for-
mat includes labels: use a text editor such as
Smile or use Property List Editor, an appli-
cation included in Apple’s Developer Tools
package.

In addition to the Class scripts and the More
stuff folders, if Smile locates a User scripts folder
it will create an additional menu with the icon of
a script, named the Scripts menu, which will dis-
play the contents of the User scripts. The Scripts
menu can launch scripts, open text documents,
application dictionaries and Smile dialogs. How

102

24.2. WHERE SMILE LOCATES ITS FOLDERS 103

the Scripts menu works is described in Chapter
9.

24.2 Where Smile locates its
folders

Smile recognizes three locations for its special
folders:

• the shared Smile folder. Smile’s shared
folder is the folder that contains the double-
clickable Smile application itself. As for
Smile 2.5.2 Smile ships as a folder which
contains Smile itself and the three special
folders Class scripts, More stuff and User
scripts. By default those are the special
folders that Smile will consider.

• the user Smile folder. Smile creates a Smile
folder in the Library/Application Support/
user’s directory: this folder is named the
user Smile folder. The user Smile folder is
a partial replica of the (shared) Smile folder
which is located in the Applications folder.
We qualify with “user” (or “shared”) the
folders located in the user (or the shared)
Smile folder.

– if you use the Worksheet, a text win-
dow that Smile saves automatically,
Smile saves it into the user Smile
folder.

– when you quit Smile, Smile saves your
personal settings and the permanent
variables into a Globals file in the user
Class scripts folder that gets created in
the user Smile folder. (Regarding per-
manent variables, see section 11.7).

– if a user Class scripts folder exists,
Smile will consider the union of that

folder with the shared Class scripts
folder: it will load the contents of both
folders. If a given file exists in both
locations, only the file located in the
user Class scripts is loaded.

– if a user Class scripts/Context addi-
tions folder exists, Smile will load the
files that it contains in addition to
the files located in the shared Class
scripts/Context additions folder. The
shared Class scripts/Context additions
folder is loaded first, so if a handler is
found in both locations, the version lo-
cated in the user directory hides the
shared one.

– if a user More stuff folder exists, then
Smile will consider that folder instead
of the shared More stuff folder. Smile
considers only one More stuff folder,
whose path is published as the my
gMoreStuffFolder global variable.

– if a user More stuff/Initialization ex-
ists, then Smile will execute the
files of that folder after having ex-
ecuted the files of the shared More
stuff/Initialization folder.

– if a user User scripts folder exists,
Smile uses that folder instead of the
shared User scripts folder. Smile con-
siders only one User scripts folder,
whose path is published as the user
folder application’s property. Having
a user User scripts folder allows the
user to edit a user script and to make
new user scripts particular to their user
account. (See Chapter 9 about how
user scripts work). You may want to
duplicate the shared User scripts folder
into the user Smile folder.

104 CHAPTER 24. SMILE’S FOLDERS

• Smile’s package. You can move the Class
scripts and More stuff folders into the Smile
application’s package. You open Smile’s
package by choosing Show package con-
tents in the contextual menu of Smile in
Finder. Smile expects to find the Class
scripts and More stuff folders in the Con-
tents/Resources/ directory. As for Smile
2.5.2, Smile does not recognize a User
scripts folder inside its package.

Chapter 25

If you are curious about Smile

25.1 The history of Smile

The history of Smile begins in ’93 with SMI,
the vision engine of Satimage, a French machine
vision company. In order to be able to develop
rapidly custom machine vision systems for var-
ious clients, Satimage develops an automation
framework based on AppleScript. By ’95 the
framework starts to make sense in itself, and
it is made publicly available for free: Smile (at
first, “SMILE” for SMI Limited Edition) is born.

Today, Satimage-software, a department of
Satimage, maintains Smile publicly available for
free, publishes free additions for the advanced
use of Smile, and makes additional Smile-based
software for dedicated purposes: SMI (machine
vision and industrial automation) for Satimage,
soon SmileLab (data processing and graphics
publishing) for the scientific users of Mac OS X,
and more products in the future.

25.2 The philosophy of Smile

The core founders of Smile are physicists and
they are familiar with the UNIX machines.
When Apple first introduced AppleScript, they
imagined how it could be if AppleScript was

used from a shell window. AppleScript is such
an advanced language and an open framework:
an AppleScript owns a context, with persistent
values, and AppleScript can send commands to
software while they run, whence providing a
much more interactive experience.

In 2003, the Smile platform is stable, powerful
and polished. It is ready to become the environ-
ment of users concerned with productivity, to be
the Swiss-army knife of the scientific OS X com-
munity, and to help more users switch to the Mac
OS X.

25.3 Why Smile is free

Satimage-software makes a deal with the users
of Smile as explicitly described at URL:
http://www.satimage-software.com/en/-
licensefree.html

• Satimage-software makes Smile available for
free

• Satimage-software makes its best to improve
frequently Smile and to suppress bugs in the
shortest delays

• Satimage-software provides a (now famous)

105

http://www.satimage-software.com/en/licensefree.html
http://www.satimage-software.com/en/licensefree.html

106 CHAPTER 25. IF YOU ARE CURIOUS ABOUT SMILE

Figure 25.1: Satimage-software welcomes feed-
back from all the users of Smile.

fast and professional technical support to
Smile users

• the users of Smile report to Satimage-
software their suggestions of improvement,
and the bugs that they experience

• the users of Smile are not angry after
Satimage-software when some new feature
is not yet fully or not yet fully safely imple-
mented

Part III

Appendices

107

Appendix A

Satimage regular expressions

A.1 Overview

Regular expressions define a syntax designed to
perform complex search operations on text, such
as searching for a class of characters instead of
a specific character — e.g., digits. Introductions
to the regular expressions can be found in
various places on the World Wide Web. You
will find a good introduction on Script Meridian’s
site.

Regular Expressions are also documented in
the manual for the grep UNIX command: type
man grep in a Terminal window, then read the
section entitled “Regular expressions”.

Alternately, use the Getman ... Smile’s user
script, which displays the manual in a standard
text window.

Most often, the Regular expressions are for
performing complex text searches. Various
UNIX tools make use of Regular expressions. In
Smile you can also use Regular expressions for
performing text replacements.

Within Smile, you can use regular expressions,
either in the Find (or Enhanced Find) panel,
or by script, by using the find text, change

and re compile commands of the Satimage
osax. Those commands are commented in the
Chapter about Smile’s general purpose library.

When you intend to use a regular expression
from a script, use the Smile’s Find (or Enhanced
Find) panel to test and debug it.

A.2 Defining a search pattern

Using regular expressions consists in the first
place in passing a special string as the search
string. That special string, instead of its
literal meaning, defines the pattern that will be
searched for.

When used in a regular expression search
pattern, most characters assume their literal
meaning, and several characters take a special
role: the metacharacters, described below in
this section.

When you use the regular expressions in a
script, you have to pass strings as AppleScript
strings.
AppleScript strings imply to encapsulate the
string between double quotes " and to “escape”
two special characters, namely the double-quote

108

http://www.scriptmeridian.org/projects/regex/docs/
http://www.scriptmeridian.org/projects/regex/docs/

A.2. DEFINING A SEARCH PATTERN 109

" and the backslash \. Escaping a character
consists in prefixing it with backslash \. Thus:
"\"" is the AppleScript string for double-quote,
and "\\" is the AppleScript string for backslash.
You may want to use the Make an AppleScript
string user script (see section 12.3.1) when you
have to make a string into an AppleScript string.

A.2.1 Metacharacters and “escape”
character

To have a metacharacter (for instance, the
bracket [) recover its literal meaning, you
prefix it with backslash \. For instance,
[a-z]\[[0-9]\] may match “c[8]”.
In other cases, as you will see below, the char-
acter with the backslash is the metacharacter,
while the character alone keeps its literal mean-
ing.
Note also that those metacharacters which do
not make sense inside brackets (the brackets de-
fine characters class, e.g. [a-z], see below) re-
cover their literal meaning inside the brackets.
For instance, [.] and [\] stand for the period
and for the backslash, respectively.

A.2.2 Anchors

You can use the characters below as tags which
will stand for some specific kind of location in
the text.

^ (hat): beginning of a line, or the beginning of
the selection in a window, or the beginning
of the text stored in a variable

$: end of a line, or the end of the selection in
a window, or the end of the text stored in a
variable.

Examples 85
change "^to be" into "" in "to be or
not to be" with regexp
-- " or not to be"
change "to be$" into "" in "to be or
not to be" with regexp
-- "to be or not "

This is the default behavior, see also section
A.2.5 about flags which change the meaning of
the tags above.

\< beginning of a word

\> end of a word

\b beginning or end of a word

\B strictly within a word

Example 86
find text "\\bbe" in "tobe or not to be"
with regexp

will match the last word.

A.2.3 Character classes

. stands for any character except CR (ASCII
13).
Example 87
find text "n(.*)" in "to be or not
to be" with regexp

will match the end of the line from
“not”.

This is the default behavior, see also section
A.2.5 about flags which allow . to match CR
(ASCII 13).

110 APPENDIX A. SATIMAGE REGULAR EXPRESSIONS

[] the brackets encapsulate the definition for
a class of characters. For instance, [0-9]
matches any digit.

- defines the range of characters which are
within (considering the ASCII ordering) the
characters on each side of the hyphen, for
instance [a-zA-Z] matches any of the 52
uppercase and lowercase Roman letters

^ defines a class by excluding the characters
which follow the hat character.
Example 88
find text "[^@]*" in "homer@lol.com"
with regexp

(the meaning of the star * is explained
below in section A.2.4)

\w any of the characters which are allowed in
words

\W any of the characters which are allowed as
word separators

\r CR, carriage return, ASCII 13

\n LF, line feed, ASCII 10

\t tab, ASCII 9

[:alnum:] pre-defined set, the Roman letters
and the digits. The pre-defined sets work
only when encapsulated within brackets.
For instance, ^[[:alnum:]]{5}@ will match
a set of exactly 5 alpha-numeric characters
located at the beginning of a line and fol-
lowed by “@”.

[:alpha:] the Roman letters

[:lower:] the lowercase Roman letters

[:upper:] the uppercase Roman letters

[:digit:] the digits

[:xdigit:] the hexadecimal digits (lowercase
and uppercase)

[:blank:] space or tab

[:space:] space, tab, CR, LF or FF

[:cntrl:] the set of the characters with an
ASCII code < 32 or = 127

[:punct:] neither a control character nor al-
phanumeric

Examples 89
change "^" into "--" in selection of
window 1 with regexp
change "^[[:space:]]*--" into "" in
selection of window 1 with regexp

would comment out and uncomment, re-
spectively, the block of text selected in the
active window.

To include a literal] in a [] range place it
first in the list.
To include a literal ^ place it anywhere but first.
To include a literal - place it last.
\w and \W are considered metacharacters only
outside brackets [].
\r, \n and \t are considered metacharacters in-
side and outside brackets, except when they just
follow a backslash.
Thus, to match a literal backslash followed by
an r \r (or to search for the sequence \n or \t)
insert an additional backslash: search for \\r.

A.2.4 Operators

* zero or more occurrences of the preceding
group, e.g. ^[[:space:]]* will match any

A.2. DEFINING A SEARCH PATTERN 111

combination of spaces and tabs at the be-
ginning of a line

+ one or more occurrences

? zero or one occurrence

{i, j} i to j occurrences, for instance
[0-9]{2,4} will match a group of 2,
3 or 4 digits

{i,} i occurrences exactly or more

{i} i occurrences exactly

| or, e.g. begin|end will match either “begin”
or “end”

() groups characters, e.g. ([0-9]{3},)+ may
match “123,234,345,”. You also use groups
when you want to be able later to reference
them:

\1, \2 ... \9 are references to the successive
groups of the pattern. Those references can
be used, either in the search string itself, or
in the using parameter of find text, or
in the into parameter of change:
^(.*)\r(.*\r)*\1$ — which, once
written as an AppleScript string, reads
"^(.*)\\r(.*\\r)*\\1$" — will match
a block of text bracketed between two
identical lines. While:
Example 90
find text "^(.*)\\r(.*\\r)*\\1$" in
someText with regexp using "\\1"

will match the same pattern, but will
return only the duplicate line.
References may be very helpful with the
change verb.
Example 91

change "([0-9]{2})/([0-9]{2})" into
"\\2/\\1" in someText with regexp

will change, e.g. “25/12” into “12/25”.
The order of the groups is the order of
the opening parentheses. If some group is
repeated in the pattern, it finally stands for
the last occurrence.
Example 92
find text "(^|[^0-9])(([0-9]{1,3}\\.)
{3}[0-9]{1,3})" in theText using
"\\2" with regexp, all occurrences
and string result

will return (as strings) the list of all
dotted numeric IP addresses found in
theText.

Example 93
find text "(^|[^0-9])(([0-9]{1,3}\\.)
{3}[0-9]{1,3})" in theText using
"\\3" with regexp, all occurrences
and string result

will return (as strings followed by a
dot) the list of the third bytes of the dotted
numeric IP addresses found in theText.

A.2.5 Flags

The dictionary of the Satimage osax states
that the regular expressions support three flags:
"EXTENDED", "NEWLINE" and "ICASE". The flags
can only be used from a script. By default (thus,
in the Find panel) the following flags are set:
{"EXTENDED", "NEWLINE"}.

"EXTENDED" Set by default. Instructs to use the
extended POSIX metacharacters set instead
of the basic one. The basic metacharacters

112 APPENDIX A. SATIMAGE REGULAR EXPRESSIONS

set does not include (), |, + nor ?. You
may want to disable the "EXTENDED" flag if
you are using a Regular expression which in-
cludes a variable: this way, the variable may
contain those characters without confusing
the Regular expression.

"NEWLINE" Set by default. Instructs to consider
each line as a separate record. Namely, the
period . does not match CR, and the an-
chors ^ and $ match beginnings and ends of
lines. If the "NEWLINE" flag is not set, the
period . may match CR, and the anchors ^
and $ match the beginning and the end of
the text.
Searches performed with the "NEWLINE" flag
disabled may require exponential amounts
of memory and thus may be more prone to
failures than searches performed with that
flag set.

"ICASE" Not set by default. When set, up-
percase and lowercase characters are con-
sidered the same. When you supply
the regexpflag parameter, the setting for
"ICASE" that you provide (implicitly or not)
overrides the case sensitive parameter of
Satimage osax’ regular expression Suite.

When you use the regexpflag parameter for the
find text, change or re compile commands,
you provide a list of flags, or an empty list.
Those flags that belong to the list will be set,
while those flags that the list does not contain
will be implicitly unset.
Example 94
find text "end$" in "end" & return
& "end" regexpflag {"EXTENDED"} with
regexp

will match only the second word, since the
"NEWLINE" flag is not set.

A.3 Defining a replace pattern

The replace string, such as entered in the Find
panel or as the into argument of the change
verb, can include the following metacharacters:
\1, \2 ... \9 (the references to the groups which
where defined in the search pattern) and the
special characters \r, \n and \t.
The same characters are valid in the string
passed as the using argument of find text.
The using argument of find text supports
strings and lists of strings — all strings recognize
the metacharacters listed just above.
Example 95
find text "(.+) (.+)" in "Mickey Mouse"
using {"Dest: Mr \\2", "Dear \\1,"}
with regexp and string result
-- {"Dest: Mr Mouse", "Dear Mickey,"}

Appendix B

Portability and raw codes

B.1 What portability is about

Portability is a concern for scripts which involve
some applications. Portability does not makes
sense for scripts which involve only pure Apple-
Script commands, including the scripts which
use terminology of the Scripting Additions.

Suppose your script runs perfectly on your
machine, where it uses a scriptable application
named “SurfWriter 4.7v5US”. Most probably it
will include lines such as:
Example 96
tell application "SurfWriter 4.7v5US"

-- your script here
end tell

When your script runs on a machine with
a different version of the software, say, “Sur-
fWriter 4.7v6”, or the same version with a
different file name, say, “SurfWriter”, the
script will probably — if you take no special
precaution — request that the user specify,
through a standard Open dialog, “Where is” the
application it must use. This can happen at the
first launch of the script on a new machine, or
at each launch, depending on how the script
is written. A script is considered portable if it

never displays that dialog.

Also on your own machine, you may get the
dreadful dialog if for some reason AppleScript is
unable to retrieve “SurfWriter 4.7v5US”, which
may happen if the application was not launched
since long.

B.2 Referring to applications
by creator code

A solution to the problem is to store in the
script, not the application’s name, but its
signature, which is common to all versions.
The signature of an application is the same
four-characters code as the creator of the files
that it creates (“VIZF” for Smile).

The script will use Finder to retrieve the
application being given its signature, and to
launch it if necessary. Here is a short sample
script which does so. It will be your responsibil-
ity to handle the error (number -1728) if Finder
does not find any application with the requested
signature, or if it cannot open it.
Example 97

113

114 APPENDIX B. PORTABILITY AND RAW CODES

set theCreator to "xxxx" -- the
signature of the application here
tell application "Finder"

set theAppName to name of
application file id theCreator

if theAppName is not in name of
every process then

open application file id
theCreator

end if
end tell

The launcher script above must run once.
If you do not know what the signature of the
application is, launch it normally, then run:
Example 98
tell application "Finder" to get
creator type of process theName

where you will have replaced theName with
the name of the application as it displays in the
Dock.

The launcher script stores the application
name into the variable theAppName (supposedly
a global variable of your script). Subsequent
calls to the scriptable application should look
like:
Example 99
tell application theAppName

-- script here
end tell

In some circumstances you may face conflicts
due to the presence on your disk of a classic
version of the application. In such a case, store
the application file’s path, not the application’s

name, in theAppName.
Example 100
tell application "Finder"

set theAppName to (application file
id theCreator) as text
end tell

tell application accepts file paths as
well as application names.

B.3 Why to use raw codes

Encapsulated in such a “virtual” wrapper
(theAppName is not resolved when the script
compiles), the script cannot use the keywords
of the target application — so the script will
not compile if it does include keywords that are
specific to the target application.
The solution here is to use “raw codes”. Raw
codes are the canonical description of Apple-
Script’s keywords (properties, classes, events,
constants, etc.). Usually, the user sees only
the ’English-like’ terminology, and AppleScript
uses the dictionary to translate the English-like
terminology into raw codes.

For example, the canonical description of the
startup disk property of the Finder is �class
sdsk�.

B.4 How to get the raw codes

To get the raw codes, write (or copy) the script
(using the usual keywords of the application) in
a window connected to the target application of
the script (see 10 about connecting a window to
an application). Preferably, use a text window.
Then, select the text of the script in this

B.4. HOW TO GET THE RAW CODES 115

window. Select Copy translate (Scripting menu),
then Paste inside the “virtual” wrapper of your
script. The script will be pasted as raw codes.
You can go back and forth between the raw
codes in your script and the keywords in the
window connected to the application.

An alternate way (proposed by jj, a Smile
user) is to write and then save the script in a win-
dow connected to the target application. When
you re-open the script, it will display the raw
codes.

Appendix C

The components for custom dialogs

Below we present the different kinds of
controls (named dialog items in Smile’s
dictionary) available in the Dialog components
palette.
How to use those controls and build custom
dialogs is described in the chapter devoted to
Smile dialogs, Chapter 15.

For each kind of item we supply the following
information:

• the value of the control kind property for
that kind of item

• what user’s action(s) will result in a notifi-
cation to a script: the events that the item
“detects”

• information specific to each kind of item

Most user’s actions result in click in events.

The click in event is sent, not to the con-
trol that received the user’s action, but to its
container: the dialog window itself or possibly a
container such as a Group Box.
The other events are sent to the control itself.

C.1 Push Button

control kind value: 368
Event(s): clicking sends click in to the con-
trol’s container.
The OK and Cancel buttons of the Dialog com-
ponents palette are special because of the special
value of their tag property, ”dflt” and ”canc”
respectively. They can be activated, by the En-
ter or Carriage Return key and by the esc key
respectively.

C.2 Static Text Box

control kind value: 288
Event(s): clicking sends click in to the con-
trol’s container.
The string that a Static Text Box displays is its
contained data property.
The settings dialog’s input field edits the string
that the Static Text Box will display in the di-
alog window. The contextual menu offers two
settings:

format: the formatting instructions for dis-
playing real numbers.
Static text items support numbers as their
contained data. You can specify the

116

C.4. PASSWORD TEXT BOX 117

format used to display numbers by supply-
ing a specification string. The formatting
string uses # for an optional digit, 0 for a
required digit, . for the decimal point.
Example 101
###.000

will force 3 decimal digits, e.g. 2.500.
If the Static Text cannot display the num-
ber in the format specified (for instance
the example above cannot be applied to
numbers above 1000) then the Static Text
uses its standard display format, which is
scientific notation.
The formatting string supports more ad-
vanced options, which are described in the
entry about the format command, whose
syntax is identical.

Justify the justification of the text, left, center
or right

As described in section 15.7, the Static Text
Box supports text coloring.
Example 102
set font of theStatic to font:-1,
color: 65535, 0, 0

C.3 Editable Text Box

control kind value: 272
Event(s): keystroke while focused sends click
in to the control’s container.
Like the Static Text Box, the contextual menu
for the Editable Text Box allows you to set the
format for real numbers using a specification
string.

The control’s contained data property
contains the text displayed in the Editable Text
Box.
By default, the control’s contained data
property returns Unicode text. To get the text
as a regular AppleScript string, specify as text
while getting the control’s contained data.
By default, each keystroke in an Editable Text
Box sends a click in event. There are cases
when you would prefer to handle the user’s entry
only when completed. For instance, you do not
want to send a ”Wrong password” message 7
times.
If you want the Editable Text Boxes of a dialog
window to send click in only when the user’s
text entry is completed, switch the dialog’s
�class VaOE� property to true (by default it
is set to false).
When the �class VaOE� property of a dialog
is set to true, the click in event is sent only
when the user types Enter or Tab or when the
user leaves the Editable Text Box, by clicking in
another field for instance. The Tab key switches
focus between the Editable Text Boxes, in the
order of their increasing index values.

Like the Static Text Box, the Editable Text
Box supports text coloring.

C.4 Password Text Box

control kind value: 274
Event(s): keystroke while focused sends click
in to the control’s container.
Works like the Editable Text Box, except that it
displays only bullets. Its contained data prop-
erty also contains bullets. The string as entered
by the user is stored in the �class pass� prop-
erty of the control.

118 APPENDIX C. THE COMPONENTS FOR CUSTOM DIALOGS

C.5 Popup Menu Button

control kind value: 400
Event(s): menu selection sends click in to the
control’s container.
The list of the menu items, a list of strings that
you can edit with the contextual menu, is the
control’s menu property. The index of the item
selected is the control’s contained data prop-
erty.

C.6 Slider

control kind value: 51
Event(s): dragging the slider and releasing the
mouse button send click in to the control’s
container.
The script is called during the mouse drag ev-
ery time the slider is moved. If Live tracking is
disabled in the contextual menu, the control de-
tects only mouse up events: the script is called
only once, when the user is finished moving the
slider.
In the contextual menu you set the range of val-
ues assumed by the control’s contained data
property when the slider is moved from left to
right, and the number of ticks displayed.

C.7 Little Arrows

control kind value: 96
Event(s): clicking sends click in to the con-
trol’s container.
The control’s contained data property reflects
which part of the control was just clicked: 0 and
1 represent the upper and lower arrows respec-
tively.

C.8 Radio Button

control kind value: 370
Event(s): clicking sends click in to the con-
trol’s container.
A Radio Button must belong to a buttons fam-
ily. A button family consists of a set of Radio
Buttons with consecutive index values.
When the user clicks a radio button, Smile auto-
matically blanks the other radio buttons in the
same family. The contained data property of
a Radio Button is an integer, 0 or 1. You can
also get it as boolean.

C.9 Check Box

control kind value: 369
Event(s): clicking sends click in to the con-
trol’s container.
The contained data of a Check Box is an inte-
ger, 0 or 1. You can also get it as boolean.

C.10 Time Clock

control kind value: 241
Event(s): clicking in the arrows or in the digits
or typing in the digits while focused send click
in to the control’s container.
In the contextual menu, you can toggle two op-
tions on and off:

Display only suppresses the arrows and makes
the control read-only.

Live makes the control continuously display the
current time.

Changes to these options are effective the next
time the object is initialized. Cutting then past-
ing the control, dragging it to a different con-
tainer, or closing then re-opening the dialog are

C.13. CHASING ARROWS 119

ways re-initializing a control.
The time displayed by the control is the control’s
�class date� property. Only the time of the
�class date� is relevant, the date of the day
may be any date.
You may observe cosmetic glitches with the Time
Clock dialog item, such as its display changing
when you click a different dialog item. One solu-
tion is to explicitly set the text font and the text
size of all concerned dialog items, and of the di-
alog itself, to the same value. For the dialog, set
its text font and text size properties. For
a dialog item, set its font property to a record
with font and text size properties.

C.11 Date Clock

control kind value: 242
Event(s): clicking in the arrows or in the digits
or typing in the digits while focused send click
in to the control’s container.
Works like the Time Clock, but only the date of
the day of the �class date� property is rele-
vant.

C.12 Progress Indicator

control kind value: 80
Event(s): none.
You set the Progress Indicator’s limit values
with the contextual menu, then your script
sets its contained data in order to display the
progress.
Changing the contained data of the Progress
Indicator does not refresh the display until the
script has finished executing. To really dis-
play a live progress bar, call smilepause, e.g.
smilepause 0, from your script each time you
change the Progress Indicator’s state.

C.13 Chasing Arrows

control kind value: 112
Event(s): none.
Like the Progress Indicator, the Chasing Arrows
dialog item requires calls to smilepause to be
refreshed while a script is executing.

C.14 Visual Separator

control kind value: 144
Event(s): none.
When you resize the Visual Separator, you can
make it an horizontal or a vertical line, depend-
ing on the shape you give to its boundary.

C.15 Disclosure Triangle

control kind value: 66
Event(s): clicking sends click in to the con-
trol’s container.
In its default state, the triangle points to the
right and the control’s contained data is 0.
Once the user clicks it, the triangle points down,
the control’s contained data is 1, and the
window that contains the control gets enlarged
downwards, by a quantity equal (in pixels) to
the value of the control’s �class MAXC� prop-
erty. (This setting should have been available in
the contextual menu, but it is not).

C.16 PDF Holder

control kind value: 256
Event(s): clicking sends click in to the con-
trol’s container.
To have the control display a PDF document,
use the contextual menu. The control displays

120 APPENDIX C. THE COMPONENTS FOR CUSTOM DIALOGS

only the first page of PDF documents. In or-
der to adjust the control’s bounds to the PDF’s
bounds, you may want to use the Get pdf’s size
user script.
Instead of an existing PDF document, you can
have the control display a PDF graphic that you
create programatically, on the fly or once for all
when you create the dialog.
Chapter 23 describes how to generate a PDF
record by script and how to imbed it in the
PDF Holder dialog item. Basically, you open
the Graphic Kernel Quick Reference help file
(Help menu), then you write a program using
the handlers provided in that file, encapsulat-
ing the graphic commands with BeginPDF ...
EndPDF. EndPDF() is the command that returns
the PDF data. Finally you set the �class
PDF � property of the PDF holder to the re-
turned PDF.
For a sample, open the script of the PDF Holder
provided in the Dialog components palette. The
script contains routines which generates a (ran-
dom) colored pattern on the fly.

C.17 Icon Control

control kind value: 323
Event(s): none.
You use the Icon Control to display an icon.
The contextual menu offers a list of icons which
should be available to Smile.
Displaying an icon consists in setting the value of
the control’s �class ICON� property to the re-
source index of a resource of type "ICN#” which
is available to the program.
Smile includes commands to handle resources,
see section 19.3.

C.18 Image Well

control kind value: 176
Event(s): clicking sends click in to the con-
trol’s container, dragging from the control sends
export to the control, dropping on the control
sends drop to the control.
The Image Well displays icons. The mechanism
is the same as for the Icon Control, except that
the control’s property which should contain a
"ICN#" resource’s number is (more consistently)
its �class ICN#� property.
The user can drop things on the Image Well,
provided you allow so. In the contextual menu,
you can set the control to accept text (strings),
files and/or Smile’s objects. When the control is
set to accept some kind of data and that kind of
data is dragged over the Image Well the Image
Well inverts its display to indicate that it can
accept the data. If the user releases the mouse
button, a drop event is sent to the Image Well’s
script:
Example 103
drop theThing onto theControl at
theLocation

theThing contains a reference to the ob-
ject that was dropped theControl contains
a reference to the control theLocation is
meaningless.

You can set the control to accept other kinds of
dropped data by setting its �class flav� prop-
erty. The control’s �class flav� property, a
list of 4-character strings, specifies what kind
of objects (what “flavors”) the control accepts.
Usual flavors include:

• "hfs ": a file reference (for exemple, an
icon from Finder)

C.21. MENU GROUP BOX 121

• "long": an integer

• "doub": a real number

• "alis": an alias

• "reco": a record

• "TEXT": a string

• "obj ": a reference to an object of Smile

The user can also perform drag-and-drop from
the Image Well. When the user starts drag-
ging the control, the control’s script receives an
export theControl event, provided the control
was set to accept at least one kind of thing as
described just above. If the control’s script in-
cludes an export handler, and if the class of the
result that the export handler returns matches
one of the items of the control’s �class flav�
property, then the drag-and-drop will carry that
quantity to the drop target. The drop target
may belong to Smile, or to any another applica-
tion (exporting file references is not fully imple-
mented).

C.19 Bevel Button

control kind value: 32
Event(s): clicking sends click in to the con-
trol’s container, dropping on the control sends
drop to the control.
The Bevel Button works like the Image Well
(above) except that you cannot drag from the
Bevel Button.

C.20 List Box

control kind value: 352
Event(s): double-clicking sends click in to the

control’s container, dragging from the control
sends export to the control, dropping on the
control sends drop to the control. Drag-and-
drop from the list into itself sends only export.

To change the contents of the list, use the
contextual menu. The List Box displays the
contents of its contained data property, which
should be a list of strings. You can re-arrange
the lines of the list by drag-and-drop.
The List Box control’s container receives the
click in event when the user double-clicks on
some item of the List Box.
The user can export from the List Box and
import into the List Box by drag-and-drop: the
mechanism is the same as described above for
the Image Well.

C.21 Menu Group Box

control kind value: 162
Event(s): a menu selection sends click in to
the control’s container Works like the Popup
Menu Button, except that the Group Box may
contain other dialog items.

C.22 Group Box

control kind value: 160
Event(s): none.
May contain other dialog items.

C.23 Tabs Holder

control kind value: 128
Event(s): clicking in one of the tabs sends click
in to the Tabs Holder. The Tabs Holder is really

122 APPENDIX C. THE COMPONENTS FOR CUSTOM DIALOGS

a container for tab items: for instance the Pref-
erences dialog contains one Tabs Holder at the
first level: that Tabs Holder contains three tab
items named General AppleScript and Windows.
Smile creates and names the tab items of a Tabs
Holder when it creates the Tabs Holder, after
the value of the control’s �class tab#� prop-
erty. The �class tab#� property specifies how
many tab items will be created, and what their
names are.
To create, remove or rename a tab item, edit
the Tab Holder’s �class tab#� property, then
force it to be created again, for instance Cut then
Paste.
Each tab item works like a regular Group Box
dialog item. To edit a tab item, the dialog must
be in edit mode. To select a different tab item,
toggle the dialog into normal mode (use the Edit
mode item of the Edit menu) then click the de-
sired tab item, then toggle back into edit mode.

Appendix D

The dictionary of Smile

D.1 Smile

prepare
reference – the newly created object

event sent by the application when an object is
created

do menu
small integer – the integer code of the com-
mand
to reference – the target of the command

event sent by the application when a menu item
is selected

click in
reference – the object
item number small integer

event generated by a click in an object

drop
anything – the dropped object
onto reference – the destination object
[at] point – the drop coordinates

event generated by dropping

export
reference – the object

Result
anything

return a description for the object to export

store
reference – the object being saved

sent by the application just before saving an
object

draw
reference

draw an object

execute
reference – the script window
[as] type class – default : return the raw
result

123

124 APPENDIX D. THE DICTIONARY OF SMILE

Result
string – result of the script

run the script of a script window

check syntax
reference – the script window

check syntax of a script window

postit
string

localize
string
[encoding] small integer

Result
string

(advanced) returns the localized string as found
in the ”Smile.localized.strings” file of the current
”.lproj” folder

notify
reference – the recipient object
[from] reference – the sender
with data anything – the message
[with delay] small real – seconds

a general mechanism intended for sending
messages from an object to another.

Class basic object

Plural form
basic objects

Properties
class type class – [read only]
name string
id integer – the unique id number [read
only]
container reference – the object it belongs
to [read only]
named reference reference – a reference by
name [read only]
bounds bounding rectangle
path name file specification
visible boolean
drawing boolean – does the object draw its
result ?
class script script – the script shared by
all objects of the same class
script script – the personal script of the
object
extras anything – any user data
extension file string – the name of the
file containing the external code for the ob-
ject
current dialog integer – the id number of
the settings dialog of the object
want idle boolean – does its script receive
an ’idle’ callback on idle events ?
idle delay small real – delay between idle
events in seconds
properties record – the properties of the
object
whole record – the properties and elements
of the object [read only]

generic class which has the properties owned by
each object

Class application (inherits from basic object)

Properties
creator type type class – [read only]
cursor arrow/watch/busy

D.1. SMILE 125

screen bounds bounding rectangle – [read
only]
user folder file specification – the folder
related to the Scripts menu [read only]
user script file file specification – the
currently running script file [read only]
context script – the class script of the basic
object class [read only]
globals script – the script of the perma-
nent global variables [read only]
dictionary string – the dictionary of the
application [read only]
modifiers list of command down/option
down/control down/shift down/caps lock
downs – [read only]
clipboard anything – can contain text, ref-
erences etc.
recording boolean – toggled to record
scripts
console reference – the text window for
recording
chrono small real – the time elapsed (in sec-
onds) since the last ”chrono” call
mouse location point
mouse button boolean
background boolean
serial ports list of strings – A list of info
for each serial device. This info is a list
{kind, UNIX path, name}. kind=9 means
RS232. [read only]

Elements
window by numeric index, name, id
text window by numeric index, name, id
script window by numeric index, name, id
graphic window by numeric index, name,
id
dialog by numeric index, name, id
IO device by numeric index, name, id
menu by numeric index, name

menu command by numeric index

the application program

Class window (inherits from basic object)

Properties
text font string – the name of the font or
its id number
text size small integer
width small integer – the width
height small integer – the height
resource id small integer – the id number
of the resource containing the definition of
the window
message height small integer – the height
of the button bar in a text window or of
the message bar in a video window
collapsed boolean
closeable boolean – Does the window
have a close box?
resizable boolean – Is the window resiz-
able?
zoomable boolean – Is the window
zoomable?
modified boolean – Is the window modified
message bar message bar – the text field
in a video window

Elements
agent by numeric index, name, id

generic window

Class agent (inherits from basic object)

Plural form
agents

Properties
active boolean
permanent draw boolean – does it still draw

126 APPENDIX D. THE DICTIONARY OF SMILE

if not active ?
call script boolean – does it send a ’post
process’ callback to its script once its job is
over ?

provides a specific functionality to a window

Class text window (inherits from window)

Plural form
text windows

Properties
selection list of integers – the selection
range, or the selected text (as text)
line width small integer
fit to window boolean – adjust text to
window width
tab width small integer
scripting language string – the default
scripting language
console reference – the text window for
output (default : the same window)
store undo boolean – true-false to encapsu-
late complex operations avoiding ridiculous
undo’s
update screen boolean – false-true to
encapsulate complex operations avoiding
lengthy text calculations

Elements
character by numeric index, relative posi-
tion, range, test
word by numeric index, relative position,
range, test
paragraph by numeric index, relative posi-
tion, range, test
text by numeric index, relative position,
range, test
run info by numeric index, relative posi-
tion, range, test

Class script window (inherits from text win-
dow)

Plural form
script windows

Class text

Properties
text size small integer
text font string – the font name or index
text color RGB color – a list, e.g. {0,0,0}
for black
style text style info
length integer
index integer – the index of the first char-
acter of the text in its window
boundaries list of integers – the text range
as a list of 2 integers
paragraph index integer
word index integer

Class dialog (inherits from window)

Plural form
dialogs

Properties
contained data record – the contents of
the dialog items, by keyword
modal boolean – does the dialog have to be
closed before any new user action ?
focus reference – the active item
mode boolean – is the dialog in edit mode?
owner reference – (advanced)

Elements
dialog item by numeric index, name

Class dialog item (inherits from basic object)

Plural form
dialog items

D.2. MISC 127

Properties
enabled boolean
contained data anything – contents of the
item
control kind small integer – the control
type as in appearance manager
call script boolean – does it trigger a
”click in” call to the script of the dialog?

Class dialog list item (inherits from dialog
item)

Properties
selection list of small integers – the indices
of the selected items

an item of a dialog which displays a list

Class menu

Plural form
menus

Properties
name string
enabled boolean

Elements
menu item by numeric index, name

Class menu item

Plural form
menu items

Properties
name string
enabled boolean
checked boolean
modifiers list of command down/option
down/control down/shift down/caps lock
downs
shortcut string

Class menu command same as menu item, but
access is by command id

Class IO device (inherits from basic object)
I/O peripheral

Class RS232 (inherits from IO device)

Properties
configname string – UNIX path to the se-
rial port (as provided in the serial ports
Smile’s property)
RSOptions RSOptions
enabled boolean
contained data string – data to send or
data received

RS232 device

Class RSOptions

Properties
bauds small integer
databits list of small integers – data bits
count (5, 6, 7 or 8)
stopbits small integer – 1: send one stop
bit, 2: send two stop bits
parity small integer – 0: disabled, 1: en-
abled, 2: odd parity
flowcontrol small integer – 0: none, 1:
outbounds CTS, 2: inbounds DTR, 3: en-
able input and output flow control

Options for RS232

D.2 Misc

Miscellaneous Events

128 APPENDIX D. THE DICTIONARY OF SMILE

do script
string – the script
[as] type class – wanted type for the result

Result
anything

execute a script

cut
reference

copy
reference

paste
reference

undo
reference

reveal
reference

Bring the specified object(s) into view

D.3 Satimage utilities

display
anything

Result
string

return the direct object as a string

smilepause
real – the timeout in seconds

remote info for
alias – the file

Result
a list of string – {the appletalk zone,the
server name,the volume}

locate an alias on the network

extractcolumn
small integer – the column index
[thru] small integer – the last column
in anything – a file, a string or an array of
real
[as] type class – requested type for the result
[skipping] small integer – number of lines
to skip

Result
string – the column

throwerror
string – the error string
[number] small integer – the error number
[partial result] anything
[from] reference – the offending object

Result
anything

same as error, but faster

find definition for
string
[in] alias – (list of) file or folder, default :
scripting additions folder
[as] type class – default : return the defini-
tion as styled text

Result
anything

D.4. SMILE DRAWINGS SUITE 129

converttext
string – the string to convert
from string – the initial encoding
to string – the requested encoding

Result
string – the converted string

textencodings
[as] type class – string or integer, default :
string

Result
a list of string – the available text encodings

D.4 Smile drawings Suite

makePDF
string – the pdf description provided by
Graphic Kernel
[in] anything – write directly into this file
media box bounding rectangle

Result
string – the PDF data

addPDF
string – the pdf data or file
in reference – a reference to a window
at anything – a point or a rect

Class graphic window (inherits from window)

Plural form
graphic windows

Properties
frame list of small reals – {x origin,y ori-
gin,width,height}, the page frame. Values
are real numbers. Unit = 1/72 inch (1
pixel). Prefer pageheight and pagewidth
pageheight small real – Unit = 1/72 inch.

Can be set in inches or centimeters
pagewidth small real – Unit = 1/72 inch.
Can be set in inches or centimeters
grid list of small integers – a list of 2 in-
tegers, default is {1,1}. These nummbers
are used to provide default frames to the
graphic views. The first (resp. second)
number is the number of expected views
horizontaly (resp. verticaly)
back pdf list of strings – The pdf data for
the background of the window. Can be set
to a file, to some Graphic Kernel output or
to raw pdf data as string.
front pdf list of strings – The pdf data
drawn after the background and the graphic
views of the window. Can be set to a file, to
some Graphic Kernel output or to raw pdf
data as string.
title offset list of small reals – vertical
offset for view’s titles

Elements
graphic view by numeric index, name

a window where you can draw pictures of
various kinds by script, and that you can save
as a pdf file or as a tiff file.

Class graphic view (inherits from basic ob-
ject)

Properties
frame list of small reals – {x origin,y ori-
gin,width,height}. Defines the rectangular
region which will be erased when the graphic
object is redrawn. The rectangle is relative
to the origin of the graphic window. Val-
ues are real numbers. Unit = 1/72 inch (1
pixel)

a virtual class, the common ancestor for all
the classes of objects that you may create in a

130 APPENDIX D. THE DICTIONARY OF SMILE

graphic window.

D.5 SmileLab Suite

Graphic presentation of numerical data. Unless
otherwise stated, lengths are real numbers, and
the length unit is 1/72 inch (1 pixel)

HSV2RGB
list of small real – {hue,saturation,value}

Result
a list of small real – {red,green,blue}

color translation

choose color
list of small real – {red=0..1,green,blue}

Result
a list of small real – {red=0..1,green,blue}

choose a color with the colr picker

Class picture view (inherits from graphic
view)

Properties
contained data string – Quartz data. See
the documentation of Smile’s graphic engine
for more information.

Class plot (inherits from graphic view)

Plural form
plots

Properties
plot frame list of small reals – {x origin,y
origin,width,height}, the rectangle enclos-
ing the curves. Values are real numbers.
Unit = 1/72 inch (1 pixel)
limits list of small reals –
{xmin,xmax,ymin,ymax}, the limit values
for the x and y axis
text font string – the name of the font
text size small real
pen color list of small reals –
{red=0..1,green,blue,alpha=0..1}, al-
pha=1 (opaque drawing) as of MacOS 10.1
fill color list of small reals –
{red=0..1,green,blue,alpha=0..1}, al-
pha=1 (opaque drawing) as of MacOS 10.1
grid color list of small reals –
{red=0..1,green,blue,alpha=0..1}, al-
pha=1 (opaque drawing) as of MacOS 10.1
grid dash list of small reals –
{Lstart,Lstr1,Lsp1,..,Lstrn,Lspn}. Dash
starts at Lstart and draws n sequences of
stroke (Lstr) + space (Lsp). For instance
use Lstart = Lstr1 to have dash start at
beginning of first space.
grid pen width small real
major tick length small real
minor tick length small real – (enter
a negative value to have the ticks point
outwards)
log xaxis boolean – Is the x axis logarith-
mic? Default false.
log yaxis boolean – Is the y axis logarith-
mic? Default false.
grid reference – use ”grid” only with the
”draw” verb to have the grid redraw before
drawing the set of curves
xlabel string – text of label for x axis.
Texts of labels support TeX conventions.
For instance ”\\p” will display the greek pi

D.5. SMILELAB SUITE 131

letter, ”a^n” (resp. ”a n”) will display n as
a superscript (resp. subscript).
xlabel offset small real – vertical offset
of label for x axis
ylabel string – text of label for y axis.
Texts of labels support TeX conventions.
For instance ”\\p” will display the greek pi
letter, ”a^n” (resp. ”a n”) will display n as
a superscript (resp. subscript).
ylabel offset small real – horizontal
offset of label for y axis
label text font string – the name of the
font. If the specified font is not available,
the default font is used instead.
label text size small real
legend frame list of small reals – {x
origin,y origin,width,height}. Values are
real numbers. Unit = 1/72 inch (1 pixel)
legend text font string
legend text size small real
legend pen width small real – pen width
for the legend frame
legend fill color list of small reals –
{red=0..1,green,blue,alpha=0..1}, alpha=1
(opaque drawing) as of MacOS 10.1

a virtual class, the ancestor for curveplot,
contourplot, vectorplot and imageplot

Class curveplot (inherits from plot)

Plural form
curveplots

Properties
legend sample length small real
legend on curve boolean – true, displays
the curves’ names on the curves, at the
abscissa provided as the ”legend abscissa”
property

legend abscissa small real – effective only
if ”legend on curve” is true

Elements
curve by numeric index, name

use the curveplot to display 1-d curves. curve-
plots are the containers for curves.

Class curve (inherits from basic object)

Properties
line style small integer – 0 none, 1 line,
2 smooth. Smoothing makes more sense
if the curve really represents some f(x)
function.
pattern style small integer – 0 none,
1 circle, 2 square, 3 diamond, 4 upwards
triangle, 5 downwards triangle, 6 x-cross, 7
cross, 8 point, 9 custom
custom pattern list of small reals –
{x1,y1,..,xn,yn}, coordinates of the polygon
which will be used as the pattern (effective
only is ”pattern style” is set to 9)
pattern size small real – size of the
pattern if ”pattern style” is not 0
pen color list of small reals –
{red=0..1,green,blue,alpha=0..1}, al-
pha=1 (opaque drawing) as of MacOS 10.1
fill color list of small reals –
{red=0..1,green,blue,alpha=0..1}, al-
pha=1 (opaque drawing) as of MacOS 10.1
pen width small real
dash list of small reals –
{Lstart,Lstr1,Lsp1,..,Lstrn,Lspn}. Dash
starts at Lstart and draws n sequences of
stroke (Lstr) + space (Lsp). For instance
use Lstart = Lstr1 to have dash start at
beginning of first space.
formula string – any function of the x
variable, for instance ”sin(x)”. Check the

132 APPENDIX D. THE DICTIONARY OF SMILE

Satimage osax dictionary regarding the
available mathematical functions. Set the
formula to the empty string to suppress it.
step small real – the distance between two
consecutive x values where the formula
will be computed. By default ”step” is 0
and SmileLab computes the formula at 20
equidistant points.
xdata list of real – the list of the x values
ydata list of real – the list of the y values
contained data list of small reals – Ob-
solete. The x & y values as a list of two
lists of equal length {{x1,..,xn},{y1,..,yn}}
(effective only if ”formula” is set to the
empty string)
antialiasing boolean – default true.
Plots made of a huge numbers of points
(such as Poincar maps) may be nicer if
”antialiasing” is set to false.
in legend boolean – Is the curve displayed
in the curveplot’s legend box? Default true.

a curve may plot, either an explicit function
provided as its ”formula”, or a set of points
provided as its ”contained data”

Class contourplot (inherits from plot)

Properties
userzlimits boolean – true: use zmin and
zmax, false: auto compute them
zmin small real – (effective only if ”userzlim-
its” is set to true)
zmax small real – (effective only if ”userzlim-
its” is set to true)
level number small integer – the number
of contours
color palette list of small reals – a list
of 4*n real numbers, {red0, green0, blue0,
alpha0,...}, n is at most 256. Default is a
rainbow palette.

xdata matrix – either the list of the x values,
or the full 2D array of the x values, format-
ted as a matrix i.e.: {nrows:i,ncols:j,array
of real:thedata}. If ”xdata” is empty, the
positive integers are used as the default x
values.
ydata matrix – either the list of the y values,
or the full 2D array of the y values, format-
ted as a matrix i.e.: {nrows:i,ncols:j,array
of real:thedata}. If ”ydata” is empty, the
positive integers are used as the default y
values.
zdata matrix – the 2D array of the z values,
formatted as a matrix. A matrix is a record
formatted as follows: {nrows:i,ncols:j,array
of real:thedata}.

use the contourplot to display contours of a
z(x,y) surface

Class vectorplot (inherits from plot)

Properties
arrow def list of small reals –
{smallLength,overallLength,overallWidth},
defines the shape of the arrow
vector scaling small real
xdata matrix – either the list of the
x values, or the full 2D array of the
x values, formatted as a matrix i.e.:
{nrows:i,ncols:j,array of real:thedata}. If
”xdata” is empty, the positive integers are
used as the default x values.
ydata matrix – either the list of the
y values, or the full 2D array of the
y values, formatted as a matrix i.e.:
{nrows:i,ncols:j,array of real:thedata}. If
”ydata” is empty, the positive integers are
used as the default y values.
vxdata matrix – the 2D array of the
x-coordinates of the vector field, formatted

D.5. SMILELAB SUITE 133

as a matrix. A matrix is a record format-
ted as follows: {nrows:i,ncols:j,array of
real:thedata}.
vydata matrix – the 2D array of the
y-coordinates of the vector field, formatted
as a matrix. A matrix is a record format-
ted as follows: {nrows:i,ncols:j,array of
real:thedata}.

use the vectorplot to display a vector field

Class imageplot (inherits from plot)

Properties
zdata matrix – the 2D array of the z values,
formatted as a matrix. A matrix is a record
formatted as follows: {nrows:i,ncols:j,array
of real:thedata}.
userzlimits boolean – true: use zmin and
zmax, false: auto compute them
zmin small real – (effective only if ”userzlim-
its” is set to true)
zmax small real – (effective only if ”userzlim-
its” is set to true)
color palette list of small reals – a list of
4*n real numbers, {red0, green0, blue0, al-
pha0,...}, n is at most 256. Default is a gray
palette.
inverted boolean – inverts the color palette

use the imageplot to visualize a 2D array of real
numbers as a bitmap image. Default palette is
gray.

Class plot3D (inherits from graphic view)

Properties
frame list of small reals – {x origin,y
origin,width,height}. Defines the rectangu-
lar region which will be erased when the
surface is redrawn. The rectangle is relative

to the origin of the graphic window. Values
are real numbers. Unit = 1/72 inch (1
pixel)
eye position list of small reals – {x,z,y},
note the special ordering of the coordinates
(inherited from the OpenGL conventions)
light position list of small reals –
{x,z,y}, note the special ordering of the
coordinates (inherited from the OpenGL
conventions)
projection list of small reals –
{left,right,bottom,top,near,far}, defines
the cube which is used as the orthographic
parallel viewing volume to perform the 3D
view (in the OpenGL framework, ”projec-
tion” is glOrtho)
rotation list of small reals –
{angle,vx,vz,vy}, defines an optional
rotation of the surface (in the OpenGL
framework, ”rotation” is glRotatef). angle
is in degrees (use with caution)
legend frame list of small reals – {x
origin,y origin,width,height}. The frame
for the color scale. Values are real numbers.
Unit = 1/72 inch (1 pixel). Set to {0,0,0,0}
to suppress the color scale.
userlimits list of booleans – a list of 4
booleans; true: use min and max given by
limits, false: auto compute them
limits list of small reals –
{xmin,xmax,ymin,ymax,zmin,zmax,colmin,colmax},
the limit values for the x, y, z and color
xdata matrix – either the list of the
x values, or the full 2D array of the
x values, formatted as a matrix i.e.:
{nrows:i,ncols:j,array of real:thedata}. If
”xdata” is empty, the positive integers are
used as the default x values.
ydata matrix – either the list of the
y values, or the full 2D array of the

134 APPENDIX D. THE DICTIONARY OF SMILE

y values, formatted as a matrix i.e.:
{nrows:i,ncols:j,array of real:thedata}. If
”ydata” is empty, the positive integers are
used as the default y values.
zdata matrix – the 2D array of the z values,
formatted as a matrix. A matrix is a record
formatted as follows: {nrows:i,ncols:j,array
of real:thedata}.
colordata matrix – the 2D array of
the z values, formatted as a matrix. A
matrix is a record formatted as follows:
{nrows:i,ncols:j,array of real:thedata}.
drawaxes boolean
xperiodicity small integer – 0 non pe-
riodic, 1 data are periodic with period
ncols-1, 2 data are periodic with period
ncols
yperiodicity small integer – 0 non pe-
riodic, 1 data are periodic with period
nrows-1, 2 data are periodic with period
nrows
orientation boolean – surface orientation.
Default is true. SmileLab renders the
outer/upper side of the surface as a shining
surface, and its inner/down side as a dull
surface. Depending on how the surface is
parametrized, you may want to inverse the
default orientation.
xlabel string – text of label for x axis.
Texts of labels support TeX conventions.
For instance ”\\p” will display the greek pi
letter, ”a^n” (resp. ”a n”) will display n as
a superscript (resp. subscript).
xlabel offset small real – vertical offset
of label for x and y axis
ylabel string – text of label for y axis.
Texts of labels support TeX conventions.
For instance ”\\p” will display the greek pi
letter, ”a^n” (resp. ”a n”) will display n as
a superscript (resp. subscript).

use the plot3D to display a realistic rendering of
a surface. SmileLab implements an orthographic
parallel viewing.

Appendix E

The dictionary of the Satimage osax

E.1 Satimage text Additions

mailto:support@satimage-software.com

find text
string – the substring to search for (or a
result of re compile for advanced use of
regexp)
in string – if ”find text” is called from
Smile, can be a reference to a window, or a
reference to a range of text in a window
[case sensitive] boolean – default true
[regexp] boolean – default false
[whole word] boolean – default false
[regexpflag] list of string – a subset of
{”EXTENDED”,”NEWLINE”,”ICASE”};
default {”EXTENDED”,”NEWLINE”}
[using] string – the pattern to generate the
returned string (needs regexp true)
[all hits] boolean – returns a list of all
hits instead of the first one only. Default :
false
[string result] boolean – return only the
matching string

Result
record – {matchLen: length of the match,
matchPos: offset of the match, matchRe-

sult: the matching string}. The matching
string may be formatted according to the
”using” parameter. If ”string result” is true,
only the matching string is returned instead
of the record.

searches a given string, or a given regular
expression pattern (see Appendix A for the
documentation about regular expressions), in
a string. If called from Smile, ”find text”
supports as its ”in” parameter — in addition to
strings — a reference to a window of Smile, or
a reference to any range of text in a window of
Smile. Example:

change ":" into "/" in first paragraph
of selection of window 1

Regarding how to describe a range of text of
a window, see Chapter 13 about Smile’s Text
Suite.

change
string – the substring to search for (or a
result of re compile for advanced use of reg-
exp)
into string – the replacement string
in anything – a string or a reference to a

135

136 APPENDIX E. THE DICTIONARY OF THE SATIMAGE OSAX

file (alias). If ”change” is called from Smile,
can be a reference to a window, or a refer-
ence to a range of text in a window
[case sensitive] boolean – default true
[regexp] boolean – default false
[whole word] boolean – default false
[regexpflag] list of string – default
{”EXTENDED”,”NEWLINE”}

Result
anything – the new string if the ”in” pa-
rameter is a string or a reference to a file,
otherwise the list {number of hits, offset of
the last replace}

replace all occurrences of a literal substring
or of a regular expression pattern. If the ”in”
parameter is a reference to a file, the file remains
unchanged and ”change” returns the new string.

re compile
string – the regular expression
[case sensitive] boolean – default true
[regexpflag] list of string – a subset of
{”EXTENDED”,”NEWLINE”,”ICASE”};
default {”EXTENDED”,”NEWLINE”}

Result
re pattern – an opaque pattern which may
be used as the search string for ”find text”
and ”change”

compile a regular expression. The result can be
supplied as the direct parameter for ”find text”
and ”change”.

extract string
string – the original string
[from] integer – index of the first character.

Default : 1. Negative numbers index char-
acters backwards.
[to] integer – index of the last character.
Default -1. Negative numbers index charac-
ters backwards.

Result
string – the substring

extract a substring out of a string. Same as
AppleScript’s expression ”text i thru j of s”, but
used to be safer.

uppercase
string – the original string

Result
string – the uppercase string

move to uppercase. Handles accented charac-
ters.

lowercase
string – the original string

Result
string – the lowercase string

move to lowercase. Handles accented characters.

convert to Windows
string – the original string

Result
string – the converted string

converts a Mac string into a Windows string

E.2. SATIMAGE FILES ADDITIONS 137

convert to Mac
string – the original string

Result
string – the converted string

converts a Windows string into a Mac string

format
real – the number
into string – the formatting string, using
#,^,O,.,%,’,(,),+,-

Result
string – the formated number

format a real number using a specification
string. Ex: format pi into ”##.##”->”3.14”.
”0” instead of ”#” forces trailing zeros. ”^”
adds a space. ”+f1;-f2;f3” provides formats
for numbers >0, <0, =0. Encapsulate custom
strings with ”’”.

E.2 Satimage files Additions

alias description for
alias – the remote item

Result
a list of string – {the AppleTalk zone name,
the server machine name, the server volume
name, folder name, [], item name}

provide info needed to refer to a remote item

navchoose file
[with prompt] string – a prompt to be dis-
played in the file chooser

[of type] list of string – restrict the files
shown to only these file types
[starting at] alias – the default file or
folder
[multiple files] boolean – allow multiple
files selection (default true)
[show packages] boolean – (default true)
[open packages] boolean – (default false)

Result
a list of alias – the chosen files

choose file with navigation services

navchoose folder
[with prompt] string – a prompt to be dis-
played in the folder chooser
[starting at] alias – the default folder
[open packages] boolean – (default false)

Result
a list of alias – the chosen folders

choose folder with navigation services

navchoose object
[with prompt] string – a prompt to be dis-
played in the folder chooser
[starting at] alias – the default folder
[show packages] boolean – (default true)
[open packages] boolean – (default false)

Result
a list of alias – the chosen folders

choose file or folder with navigation services

navchoose volume
[with prompt] string – a prompt to be dis-
played in the folder chooser
[starting at] alias – the default folder

138 APPENDIX E. THE DICTIONARY OF THE SATIMAGE OSAX

Result
a list of alias – the chosen folders

choose volume with navigation services

navask save
[file name] string – name of the file
[action] small integer – 1 on close, 2 on
quit, 0 ?

Result
small integer – 1 save, 2 cancel, 3 don’t save

prompt for save

navchoose file name
[with prompt] string – the text to display
in the file creation dialog box
[default name] string – the default name
for the new file
[with menu] list of string – list of menu
items
[starting at] alias – the default folder
[open packages] boolean – (default false)

Result
file specification – the file the user specified

Get a new file specification from the user, with-
out creating the file. Uses navigation services

navnew folder
[with prompt] string – the text to display
in the file creation dialog box
[starting at] alias – the default folder
[open packages] boolean – (default false)

Result
file specification – the folder the user speci-
fied

Get a new folder specification from the user.
Uses navigation services

list files
alias – a folder
[recursively] boolean – default: true
[invisibles] boolean – default: false

Result
a list of alias

the list of the files contained in the folder. By
default, the list includes the files located in
nested folders.

E.3 Satimage utilities Suite

Miscellaneous utilities.

backup
file specification – the source folder
onto file specification – the destination
folder
[level] small integer – 0: report only, 1:
synchronize folders, 2 : synchronize and re-
port. Default 0.
[after] date – files older than this date are
not processed.
[recursively] boolean – recursively syn-
chronize subfolders. Default true.

Result
string – the (optional) report

synchronizes 2 folders. The aliases located at
the first level of the source folder and of the des-
tination folder are resolved, the aliases located
deeper are not. Thus, you can choose to fill the

E.4. RESOURCE SUITE 139

source folder with aliases to the original folders
that you want to backup. In the destination
folder, you will put aliases to the copies, that
need to be synchronized, supplying to each alias
the same name as the corresponding alias to an
original folder.

special concat
record – the record
with record – the additional data

Result
record

concatenate {a ppty:X, } and {a ppty:Y, }
into {a ppty:Z, }, where Z is X & Y (resp.
X + Y) if X,Y are lists (resp. numbers).
Can also be used to append a new column
to an array given in text format. The direct
parameter should be a string representing an
array with tab-delimited columns and return-
delimited rows. The ”with” parameter is the
column to append: it is a return-delimited
string. ”special concat” will return, still as a
string, the array with the new column appended.

suppress item
anything – the rank or key of the item. Use
quotes around custom properties, and also
around 4-characters codes. (If you don’t
know what this means, you don’t need it).
from anything – a list or a record

Result
record

delete an item from a list or a record.

E.4 Resource Suite

Utilities to read and write resources from/to a
file.

load resource
small integer – index of the desired resource
type type class – type of the desired re-
source
from file specification – file to read from
[as] type class – an AppleScript type for the
returned result

Result
anything – any AppleScript data that is
stored in the resource: data, object speci-
fication, reference, etc.

get the resource of the given type and id from
the specified file

list resources
type class – type of desired resources
from file specification – file to read from

Result
anything – the list of ids

return the list of the ids of the resources of the
specified type stored in the specified file

get resource name
small integer – index of the desired resource
type type class – type of the desired re-
source
from file specification – file to read from

Result
anything – the name of the resource

140 APPENDIX E. THE DICTIONARY OF THE SATIMAGE OSAX

return the name of the resource of the specified
type and id from the specified file

put resource
anything – the AppleScript data that will
be stored in the resource
to file specification – the destination file
type type class – the resource type
index small integer – the resource id
[with name] string – the resource name

write the given resource to the specified file with
specified type and id

E.5 Math

Some mathematical functions. Most functions
accept as their direct parameter (and return) a
list or an array of real. Notice: you may need
more parenthesis than is intuitive. Ex: cos(a) -
b returns cos(a - b), so you may want to write
(cos(a)) - b.

abs
real

Result
real

absolute value of direct parameter

acos
real – -1 <= x <= 1

Result
real – in radians

arc cosine of direct parameter

acosh
real – a positive number

Result
real

hyperbolic arc cosine of direct parameter

asin
real – -1 <= x <= 1

Result
real – in radians

arc sine of direct parameter

asinh
real

Result
real

hyperbolic arc sine of direct parameter

atan
real

Result
real – in radians

arc tangent of direct parameter

atan2
list of real – 2 real numbers : y (ordinate)
and x (abscissa)

E.5. MATH 141

Result
real – in radians

the angle of the line whose direction is the
vector (x , y)

atanh
real – -1 < x < 1

Result
real

hyperbolic arc tangent of direct parameter

cosh
real

Result
real

hyperbolic cosine of direct parameter

cos
real – the angle (in radians). If the angle
is in degrees, multiply it by pi / 180 before
taking the cosine.

Result
real

cosine of direct parameter

erf
real

Result
real

the error function

erfc
real

Result
real

the complementary error function

exp
real

Result
real

exponential of direct parameter

gamma
real – a positive number

Result
real

the gamma function

hypot
list of real – 2 real numbers

Result
real

the square root of the sum of the squares of its
arguments

lgamma
real – a positive number

142 APPENDIX E. THE DICTIONARY OF THE SATIMAGE OSAX

Result
real

base-e logarithm of the absolute value of gamma

ln
real – a positive real

Result
real

base-e logarithm of direct parameter

log10
real – a positive real

Result
real

decimal logarithm of direct parameter

sin
real – the angle (in radians)

Result
real

sine of direct parameter

sinh
real

Result
real

hyperbolic sine of direct parameter

sqr
real

Result
real

square of direct parameter

sqrt
real – a positive number

Result
real

square root of direct parameter

tan
real – the angle (in radians)

Result
real

tangent of direct parameter

tanh
real

Result
real

hyperbolic tangent of direct parameter

multlist
list of real
with list of real

Result
a list of real

performs the product of the parameters. Each
parameter may be a list, an array of real, or
a number. multlist {x1,x2...} with {y1,y2...}
returns {x1.y1, x2.y2, ...}; multlist x with
{y1,y2...} returns {x.y1, x.y2, ...}

E.5. MATH 143

divlist
list of real
with list of real

Result
a list of real

same as multlist, but for quotient

addlist
list of real
with list of real

Result
a list of real

same as multlist, but for sums

sublist
list of real
with list of real

Result
a list of real

same as multlist, but for subtraction

reversearray
list of real – ... or an array of real

Result
array of real

returns reverse of the direct parameter.

statlist
list of real – ... or an array of real

Result
record

returns as a record the min, max, min index,
max index, mean, standard deviation.

replacemissingvalue
list of small real
with small real

Result
a list of small real

replace missing values (or nans) in a list (or an
array of real)

read binary
file specification – the file
as type class – the format of the data file:
real (8 bytes) or small real (4 bytes)
[skip] integer – the number of bytes to skip
[length] integer – the number of real to read

Result
array of real

read a file of real or small real

write binary
file specification – the file
with data array of real
[starting at] integer – offset in bytes, de-
fault : append data at the end of the file

write the data into a binary file of small real (4
bytes per number)

extractitem
integer – the first item to read
[thru] integer – default -1
[step] integer – default 1

144 APPENDIX E. THE DICTIONARY OF THE SATIMAGE OSAX

in array of real
[blocksize] integer – size of the block to
read at each step. blocksize must be smaller
than step

Result
array of real

creatematrix
string – ”1”: array of 1.0, ”x”: array of x
values, ”y”: array of y values
ncols integer
nrows integer

Result
array of real

create an array of real of size ncols*nrows

Class array of real a packed list of small
real. ”array of real” is an opaque class, which
can be coerced to and from a standard Apple-
Script list of real numbers. The Satimage osax
and Smile use the ”array of real” class for faster
and safer computations on large lists of real
numbers.
To make an array of real into a standard Apple-
Script list of real numbers, use ”as list of real”.
Conversely, a list of real may be translated using
”as array of real”.

Appendix F

Built-in routines

When you run a script in Smile, the script
is executed in Smile’s context. This is true for
scripts executed in a text window (as described
in section 4.2). It remains true for any script
that you run in Smile — e.g. a user script
(see Chapter 9 about user scripts), or a script
executing in a script window. In other words,
within Smile, a tell application "Smile" is
implicit.
The only exception is for windows connected to
an application (see section 10 about connecting
a window to an application), whose context
restricts strictly to the context of the target
application.

Smile’s context contains a number of handlers,
most of which are intended for internal use by
Smile. Though, several of those handlers may be
of more general use, and they are available to any
script running in Smile. Here is that selection of
handlers.

F.1 Handlers which display
text

FatalAlert (theString) displays the string in
an alert box, with the Stop icon and one OK
button. Use FatalAlert to notify the user

that some operation cannot be performed.
FatalAlert is one variant of display
dialog.

QuitAlert (theString) same as FatalAlert,
but the button reads Quit.
QuitAlert is one variant of display
dialog.

AskUser (thePrompt, theDefaultReply)
prompts the user to enter a string, and
returns this string. The prompt is the
string stored in thePrompt. The dialog box
shows the Note icon, and displays the string
stored in theDefaultReply as the default
reply. If the user cancels, AskUser returns
the error User canceled (error number
-128). Use AskUser to have the user enter
a string or cancel the current operation.
AskUser is one variant of display dialog.

dd (theString) displays the string in an alert
box, with the Note icon and one OK button.
Use dd to display an informative message,
such as “Operation completed”.
dd is one variant of display dialog.

ShowMessage (theString) displays the string
in a small window named “Note”. Use

145

146 APPENDIX F. BUILT-IN ROUTINES

ShowMessage to display an informative mes-
sage while a script is running.

HideMessage () dismisses the message dis-
played with ShowMessage.

ShowHideMessage (theString, theDelay)
same as ShowMessage, but dismisses the
message after the delay stored in theDelay
as seconds.

quietmsg (theString) appends the string to
the Console window, in a new line. If the
Console is not open, quietmsg will open it.
If the Console is currently hidden by other
windows, it remains hidden. If theString
does not contain a string, quietmsg will at-
tempt to apply the standard coercion into
string: for instance you can pass a file de-
scriptor as theString, but not a record.

msg (theString) same as quietmsg, except
that msg brings to front the Console win-
dow.

log (theString) same as msg, except that if
theString does not contain a string, log
attempts to produce a string representation
of theString. For instance, log can
display a standard AppleScript record or
a list. log will not display a value which
belongs explicitly to an application other
than Smile, such as startup disk of
application "Finder".
To display the contents of a variable
which contains such a value, use Smile’s
do script verb with as text. Since do
script creates a temporary context for
its own, use the my prefix to refer to the
variable.
Example 104

quietmsg(do script "my x" as text)

F.2 Handlers which sort lists

sort (theList) returns a copy of theList
sorted, by increasing values for numbers,
resp. by alphabetic/ASCII order for strings.
sort keeps theList unchanged. sort uses
a recursive algorithm.

heapsort (theList) like sort except that
heapsort uses a non recursive algorithm.

F.3 Miscellaneous helpers

make new name supplies a unique name, based
on the current time and date, under the
form YYMMDD HHMMSS.

tid (theChar) a shortcut for setting Apple-
Script’s text item delimiters to {theChar}
tid("") restores the default value, which is
the empty string.

Preset color constants Smile defines a set of
colors. These are RGB colors described as
lists of 3 integers between 0 and 65535:

Five grey levels black = {0, 0, 0},
charcoal, grey, mouse, white =
{65535, 65535, 65535}

Seven colors red, green, blue, cyan,
magenta, yellow and purple.

The Text suite uses that format for colors.
Example 105
set color of text of window 1 to
white

F.5. HANDLERS WHICH HELP MANIPULATING SMILE OBJECTS 147

The SmileLab library and the pdf library
(“Graphic Kernel”) use colors described as
lists of 3 or 4 numbers between 0 and 1.
Thus, in SmileLab and in pdf’s, you have
to rescale their values in order to use the
pre-defined constants.
Example 106
set pen color of theCurve to divlist
magenta with 65535

F.4 Handlers which open files

OpenDictionary (thePath) accepts a file ref-
erence or a list of such. Opens the
dictionary(-ies) of the file(s).

DoOpen (thePath) the high-level handler for
having Smile open a file. Performs more
checking than the mere open event — that
you can use as well. In particular, DoOpen
will bring to front the window of the docu-
ment if the file is already open in Smile.

FileToWindow (thePath) if the file is open in
Smile, FileToWindow returns a reference
to its window, otherwise it triggers error
number -1719 (Invalid index).

GetText (thePath) returns the source of the
script if the file is a script document, oth-
erwise GetText returns the contents of the
file’s data fork — in particular, its unfor-
matted text for a text document.

EditObjectScript (theObject) opens the
script of the object.
Example 107

EditObjectScript (last dialog item
of window 2)

Usually you can open the script of an
object by apple-option-click. You may want
to use EditObjectScript when for some
reason you cannot use that combination —
for instance the object may be invisible.

EditClassScript (theObject) displays the
class script of the object. EditClassScript
does not open the Class script file, it only
displays a copy. To edit a Class script,
open it normally.

F.5 Handlers which help ma-
nipulating Smile objects

NewFileFromObject (theObject, thePath)
and

NewObjectFromFile (thePath)
NewFileFromObject saves the object
into thePath, which should be a valid
new file reference. NewFileFromObject
stores the record obtained as whole of
theObject in the resource fork of the new
file thePath. NewObjectFromFile reloads
that record and makes a new object from
the data contained in the record — which
includes the class of the object.
The whole property returns the “struc-
tural” information about the object,
including its elements and its script, but
not the data it may contain such as the
contents of a text window or the current
state or contents of an item of a dialog.

PropagateBounds(theObject, theRect)
sets the width and height of the bounds

148 APPENDIX F. BUILT-IN ROUTINES

of theObject to those of the rectangle
theRect

Appendix G

Reference of the PDF commands

G.1 Overview

Smile ships with a library of first-level primi-
tives named Graphic Kernel, located in the Class
Scripts/Context Additions folder. The functions
of the Graphic Kernel form four groups:

• functions affecting the graphic state

• functions affecting the current path

• functions related to text

• basic geometric operations on points

The Graphic Kernel uses the following conven-
tions to handle geometrical data:

a 2D point is either an AppleScript list of 2
real numbers or a record containing a point
property (see section H).

a 2D vector assumes the same format as a 2D
point

a color is an AppleScript list of 3 or 4 real
rumbers belonging to [0.0, 1.0] (RGB or
RGBA). A is the alpha channel, 0.0 is trans-
parent and 1.0 is opaque

an angle is a real number in radian

G.2 Graphic state

G.2.1 Handling States

• SaveState()

• RestoreState()

SaveState() and RestoreState() are de-
scribed in paragraph 23.3.2. They allow for sav-
ing and restoring the current stroke and fill set-
tings, the current transformation, the current
clip path (see G.3.1) and the current text set-
tings (see G.4).

G.2.2 Stroke and Fill Settings

• HSV2RGB a command in Smile’s dictionary
to perform color translation

• SetPenWidth(x)

• SetPenColor(rgba)

• SetFillColor(rgba)

• SetDashPattern(pat) define the dash pat-
tern
pat is a list of real numbers {phase,
len1, len2, ...} defining the dash pat-
tern. SetDashPattern({}) resets to no
dash.

149

150 APPENDIX G. REFERENCE OF THE PDF COMMANDS

• SetLineCap(lc) sets the style for the end-
points of lines.
lc is an integer in the range [0, 2]: 0 =
LineCapButt (default), 1 = LineCapRound,
2 = LineCapSquare.

LineCapButt
LineCapButt

LineCapRound
LineCapRound

LineCapSuare
LineCapSuare

Figure G.1: LineCaps

• SetLineJoin(lj) sets the style for the
juncture of connected lines.
lj is an integer in the range [0, 2]. 0 = Line-
JoinMiter (default), 1 = LineJoinRound, 2
= LineJoinBevel.

LineJoinMiter
LineJoinMiter

LineJoinRound
LineJoinRound

LineJoinBevel
LineJoinBevel

Figure G.2: LineJoins

• SetMiterLimit(ml) sets the miter limit for
the juncture of connected lines.
ml is a real number.

G.2.3 Applying transformations

• SetTransformation(t) apply t to subse-
quent commands

t is a list of 6 real numbers {a, b, c, d, tx,
ty}. Any point will undergo the mapping:

{x, y} −→ {ax + cy + tx, bx + dy + ty}

Therefore the Identity transformation is

{1,0,0,1,0,0}.
SetTransformation(t) combines t with the
current transformation. To terminate applying
the transformation, use RestoreState, that
you must balance with a SaveState prior to
SetTransformation.

G.3 Paths

G.3.1 Operations on paths

• DrawPath(n): draws the path as described
by the preceding graphic commands.
n is an integer parameter in the range [0...4]
corresponding to 0 for Fill, 1 for Even-
OddFill, 2 for Stroke, 3 for FillStroke, 4 for
EvenOddFillStroke. DrawPath makes the
path effective using the current state set-
tings.
If you make any path, even a single Lineto,
you must call DrawPath at least once as
the last graphic command and before any
change of the graphic state.

• ClosePath() completes the current path
by adding a line from the latest point to
the first point of the current path. Use
ClosePath in order to tackle properly the
ends of the strokes.

• ClipToPath() sets the clip region to the in-
tersection of the current clip region with the
current path. The clip region is the region to
which drawing restricts. To restore the pre-
vious clip region (usually, the whole frame),
use RestoreState, that you must balance
with a SaveState prior to ClipToPath.

G.3.2 Building paths

• Moveto(pt) sets the current position to pt.

G.4. TEXT 151

• DMove(dv) changes the current position by
dv.

• GetPathPosition() returns the current po-
sition.

• Lineto(pt) appends a line from the current
position to pt.

• DLine(dv) appends a line dv from the cur-
rent position.

• ArcToPointPath(p1, p2, theRadius) ap-
pends an arc to the current path, possibly
preceded by a straight line segment.
theradius is the radius of the arc.
The arc is tangent to the line from the cur-
rent point to p1, and to the line from p1 to
p2. In other words, ArcToPointPath draws
a broken line from the current point to p1
then to p2, performing a rounded corner for
p1.

• ArcPath(theCenter, theradius,
startAngle, endAngle, clockwise)
appends an arc of a circle to the current
path, possibly preceded by a straight line
segment.

– theCenter is the center of the arc

– theRadius is the radius of the arc

– startAngle is the angle (in radian) to
the first endpoint of the arc

– endAngle is the angle to the second
endpoint of the arc

– clockwise is 1 if the arc is to be drawn
clockwise, 0 counterclockwise.

• CircleArcPath(theCenter, theRadius,
startAngle, endAngle, clockwise) ap-
pends an arc of a circle to the current path,

line ArcPath, but without the straight line
segment.

• CirclePath(theCenter, theRadius) ap-
pends a circle.

• RectPath(r) appends a rectangular path.
r is a PDF rectangle, i.e. a list of 4 real
numbers {left, bottom, width, height}.

• QuadBezierPath(controlPoint,
endPoint) appends a quadratic Bezier
path from the current point to endPoint
with a control point controlPoint .

• BezierPath(controlPoint1,
controlPoint2, endPoint) appends
a cubic Bezier path from the current
point to endPoint with 2 control points
controlPoint1 and controlPoint2.

G.4 Text

G.4.1 Text styles

• SetTextMode(mode) mode is an integer : 0
Fill, 1 Stroke, 2 FillStroke, 3 Invisible, 4
FillClip, 5 StrokeClip, 6 FillStrokeClip, 7
Clip.

• SetTextFont(fontName) fontName is a
string.

• SetTextSize(textSize) textSize is a real
number.

• SetTextTransformation(t) texts un-
dergo the current path transformation and
SetTextTransformation allows to combine
the current transformation with a specific
transformation for the text.

152 APPENDIX G. REFERENCE OF THE PDF COMMANDS

G.4.2 Drawing Text

• TextMoveTo(pt) sets the current text posi-
tion to pt.

• GetTexPosition() returns the current text
position. Useful to measure a string’s length
in conjunction with SetTextMode(3).

• DrawText(s) draws the string s at the cur-
rent text position with the current text set-
tings, transformation and text transforma-
tion.

• DrawString(s) does not belong to Graphic
Kernel: you have to install GeomLib (de-
scribed in Appendix H) to use DrawString.
DrawString is like DrawText except that it
brings additional features intended to help
positioning nicely the text.

G.5 2D geometry

• vectfrompoint(A, B) given the 2 points A
and B, returns the vector −−→AB as a list of 2
real numbers.

• norm2(v) returns the square of the norm of
v.

• det(v1, v2) returns the determinant of the
2 vectors v1 and v2.

• scalpro(v1, v2) returns the scalar prod-
uct of the 2 vectors v1 and v2.

• normalize(v) returns the normalized of v.

Appendix H

GeomLib, a graphical library for 2D
geometry

GeomLib is an AppleScript library devoted
to the creation of nice geometrical graphs like
can be found in school books. For instance,
GeomLib includes routines to display a point’s
name at a wanted location, or to mark angles.

If you want to take fully advantage of the
GeomLib utilities on points, you may need to
use ”enriched” points: a point may be a record
containing a property point (a list of 2 real
numbers). The record may also include a name
property (a string) and a hint property, which
describes where the point’s name is to be drawn
(see H.1).

Thus {10,10} is a point and {name:"A",
point:{10,10}} is the same point.
A circle is a point with an extra radius prop-
erty:
{name:"0", point:{100,100}}, radius:50,
hint:"tr"}
is a circle.

H.1 Text Utilities

• DrawString is similar to DrawText(s).
But, the string s in not drawn as such.
First, s may begin with a bracketed posi-
tional information: [pos] where pos is 1
or 2 character(s). The characters must be
t (top), b (bottom), l (left), r (right) or h
(here).
Example 108
DrawString("[br]A")

draws the character ”A” below and on
the right of the current text position.
Example 109
DrawString("[h]A")

draws the character ”A” centered around
the current text position.

Furthermore, the characters ^ \ are
interpreted anywhere in the string: holds
for subscript, ^ for superscript, and \ for
Symbol font. Use brackets ({}) to group

153

154 APPENDIX H. GEOMLIB, A GRAPHICAL LIBRARY FOR 2D GEOMETRY

characters.
Example 110
DrawString("[t]\\a=x {ij}^2+1")

outputs:
α = x2

ij + 1
above the current text position and centered
horizontally.

• SetTextOffset(dx, dy) sets the offset
from the current text position and the lo-
cation where the text is to be drawn when
using the positional parameters.

• DrawName(pt) draws the name property of
pt at position point of pt with an offset
defined by hint of pt; i.e. if hint is present
DrawName(pt) calls:
Example 111
DrawString("[" & hint of pt & "]" &
name of pt)

If hint does not exist in pt, DrawName(pt)
draws the name of the point in the area
opposite to the ”center” of the drawing.
By default, the center of the drawing is
{0,0}. You can change the center of the
drawing with the function SetCenter(pt).

H.2 Marking

H.2.1 Marking Angles

• MarkAngle(B, A, C, r, dr, narc,
ndash) marks the B̂AC angle with narc
small arcs of radius r + k.dr and ndash
dashes (ndash should be 0 or 1).
MarkRightAngle(B, A, C, len) marks
the angle B̂AC with a small square of side
len.

Example 112

set a to {name:"A", point:{20, 20}}
set b to {name:"B", point:{20, 100}}
set c to {name:"C", point:{100, 20}}
BeginFigure(0)
DrawPolygonAndName({a, b, c})

DrawPath(2) SetPenWidth(0.5)
MarkRightAngle(b, a, c, 10)
MarkAngle(a, b, c, 15, 4, 2, 0)
MarkAngle(b, c, a, 15, 4, 2, 0)
DrawPath(2) EndFigure()

A
A

BB

C
C

Figure H.1: Output of Example 112

H.2.2 Marking Points

• MarkPointOnLine(pt, seg, dl) marks
the point pt on the segment seg (a list of 2
points) by adding a small dash of length dl
orthogonal to seg at pt.

• CrossPath(pt) appends a cross at pt.

• VertCrossPath(pt) appends a vertical
cross at pt.

H.4. BASIC GEOMETRIC FIGURES 155

• SetCrossSize(dl) defines the size of the
crosses.

H.2.3 Arrows

• ArrowPath(angle) appends an arrowhead
pointing towards the direction angle.

• SetArrowSize(list) defines the size of the
arrowheads. list is a list of 3 real numbers
(see figure H.2.3).

Figure H.2: Result of
SetArrowSize({L1, L2, L3})

H.3 Basic Geometry

• CenterOfMass(listp) returns the center of
mass of the list of points listp.

• Bisector(A, B, C) returns the normalized
bisector of B̂AC.

• Symmetric(A, P) returns the symmetric of
A with respect to P. P may be a point or a
segment (a list of 2 points).

• Project(A, seg) returns the projected of
A onto the segment seg.

• CircleFromPoints(lp) returns a record
{point: center of the circle, radius: the ra-
dius}. lp is a list of 3 points.

• Intersect(d1, d2) returns the intersec-
tion of the 2 segments d1 and d2.

H.4 Basic Geometric Figures

• DrawCircle(c) appends a circle path, and
marks the center with a cross. If the center
has a name, the name is displayed.
Example : DrawCircle({name:"O",
point:{100,100}, radius:50,
hint:"rt"}).

• DrawPolygonAndName(l) appends a poly-
gon path and writes the names of the points
away from the center of mass. This is par-
ticularly convenient for convex polygons, in
other cases you may want to add a hint to
some points.

• DrawLine(p1, p2, leftPercent,
rightPercent) appends a line which
contains p1 and p2. The line is extended
by leftPercent% on the p1 side and
rightPercent% on the p2 side.

• DrawEllipsis(P, axish, axisv) ap-
pends an ellipsis whose center is the point P
and whose axes are the vectors axish and
axisv.

• DrawVector(A, B) appends the segment AB
plus an arrow at B.

Example 113
BeginFigure(0)
set l to {}

156 APPENDIX H. GEOMLIB, A GRAPHICAL LIBRARY FOR 2D GEOMETRY

set n to 5
set dphi to 2 * pi / n
set {x, y} to {100, 100}
set r to 50
repeat with i from 0 to (n - 1)

set phi to i * dphi
set p to {x + r * (cos phi), y + r *

(sin phi)}
set end of l to {point:p, name:"A_{"

& (i + 1) & "}"}
end repeat
set item 1 of l to item 1 of l &
{hint:"rb"}
DrawPolygonAndName(l)
DrawPath(2)
SetPenWidth(0.5)
DrawLine({x + r, y}, {x - r, y}, 20, 20)
set c to CircleFromPoints(l) &
{name:"O", hint:"t"}
DrawCircle(c)
set l to {item n of l} & l & {item 1 of
l}
repeat with i from 2 to (n + 1)

MarkAngle(item (i + 1) of l, item i
of l, item (i - 1) of l, 10, 0, 1, 0)
end repeat
DrawPath(2)
EndFigure()

A1
A1

A2
A2

A3
A3

A4
A4 A5

A5

OO

Figure H.3: Output of example 113

	I Smile, the better script editor for AppleScript
	About Smile Reference Manual
	How Smile's documentation is organized
	The text files included in the distribution
	Smile's on-line help menu
	The resources available on the Web

	The scope of Smile Reference Manual
	Conventions used in Smile Reference Manual
	What you should read
	Reference Manual Change History

	An introduction to Smile
	Overview
	To get started quickly ...
	Short features list

	Installation
	What you should install
	Installing Smile from scratch
	Installing a new release
	Full install
	Partial upgrade

	Installing the Satimage osax
	First install of the Satimage osax
	Installing an upgrade of the Satimage osax

	Installing additional components
	Multiple users support

	Entering the world of Smile: scripting and debuging in text windows
	Smile, a different experience of scripting
	Scripting and debug in text windows
	Making a new text window
	Executing scripts in text windows
	Displaying the result of execution
	The scope of the variables --- Smile's context

	Working with scripts in script windows
	About script documents formats
	Making a new script window
	Opening a script document
	Working with a script window
	Editing an applet or a droplet
	Saving a script document
	Saving an applet or a droplet
	Saving a script without its source

	Editing text in text windows
	About text documents formats
	Unicode support
	ISO-8859-1 support

	Making a new text window
	Opening a text document
	Closing a text window
	Saving a text window
	Using drag and drop in text windows
	Editing text
	Selection keyboard shortcuts --- Mouse tricks
	Text searches

	Using the dictionaries
	Searching a term's definition
	Opening the dictionary of an application --- Opening the dictionary of a Scripting Addition
	Opening the dictionary of an application which is running --- Opening the dictionary of a Scripting Addition which is installed
	Opening the dictionary of the target application of a window
	Opening AppleScript's dictionary

	Scripting faster with the ``Balance'' command
	Syntax pre-typing
	Parentheses balancing
	Wrappers balancing
	``Balance()'' call to your script

	The Scripts menu
	How to use the ``Scripts'' menu
	Adding and removing menu items to/from the ``Scripts'' menu
	Displaying hierarchical menus in the ``Scripts'' menu
	Grouping items in the ``Scripts'' menu
	Using aliases in the ``Scripts'' menu
	Sorting the items of the ``Scripts'' menu
	Providing shortcuts to the items of the ``Scripts'' menu

	Connecting a window to an application --- The ``tell ...'' feature
	When to connect a window to an application
	How to connect a window to an application
	Making scripts into ``raw code''
	Targeting an application by script
	The context of a window connected to an application
	``Find definition'' in a window connected to an application
	Known bugs

	Comfort and productivity
	The Worksheet
	Handling windows efficiently
	The ``Recent files'' menu
	The ``Favorites'' menu
	Preferences
	The ``General'' pane
	The ``AppleScript'' pane
	The ``Windows'' pane

	Programmer's tools
	Variables that are saved when you quit Smile

	II The AppleScript-based automation engine
	Advanced text editing
	Advanced text searches
	The Enhanced Find panel
	Searching in folders
	Regular expressions

	Comparing files
	Text tools
	Make an AppleScript string
	ISO-Latin1 to Mac and Mac to ISO-Latin1
	Open ISO-Latin1 ...
	Measure Text
	Sort paragraphs

	The scriptable text editor --- The Text Suite
	Specifying a text range in a window of Smile
	whose, where and every
	before and after
	The properties of the text

	The UTF-16 editor
	Overview
	Using the UTF-16 editor

	Smile custom dialogs
	Overview
	Running a custom dialog
	Running a custom dialog by script
	The basics of custom dialogs
	Creating your own custom dialogs
	Making a new custom dialog
	Populating a new custom dialog

	Editing a custom dialog
	The edit mode
	Dialog editing features
	The dialog editing tools

	Scripting a custom dialog
	The basic properties of the controls
	Events received by the scripts

	Making a custom dialog multi-lingual
	What is localization?
	How to localize a dialog
	How to localize Smile
	How to localize ``Localize''

	Making a custom dialog into a stand-alone application
	Why to make a custom dialog into a stand-alone application
	Why not to make a custom dialog into a stand-alone application
	The limits of a stand-alone application
	Making a stand-alone application

	Attaching a custom dialog to an object

	Scripting Smile --- The basics
	Overview
	Manipulating objects --- The object model
	Accessing an object
	Making a new object by script

	Programming the objects --- The object scripts
	Introduction to object scripts
	How to write object scripts
	How to send commands to an object script
	The object script, a better script object

	Opening a file by script
	Providing a GUI --- The Smile dialogs
	Scheduling tasks

	Scripting Smile --- Advanced features
	Overview
	Making and editing scripts by script
	The Class scripts --- Defining new classes
	An introduction to class scripts
	Creating custom classes

	About Smile's libraries
	Overview
	Documentation about Smile's libraries

	General purpose library
	Strings
	Lists and records
	Files and resources
	Scripts
	User interaction

	Mathematical library
	Functions
	Lists and arrays of numbers

	RS232 library
	Overview
	Instructions of use

	Digital I/O library
	Overview
	Instructions of use

	PDF library --- The Graphic Kernel
	Overview
	Producing a graphic in a window
	The basics
	The graphic window
	The graphical objects

	The basics of the PDF language
	The paths
	The Graphic State

	The graphic commands
	Producing PDF data
	The basics
	Producing a PDF file
	Appending PDF to a PDF file
	Setting the background or the foreground picture of a SmileLab plot
	Displaying an animation in a graphic window
	Displaying graphics in a picture view
	Displaying animated graphics with picture views
	Displaying graphics in a custom dialog

	Additional information and examples
	How Smile's PDF engine really works
	Additional resources

	Smile's folders
	The roles of Smile's folders
	Where Smile locates its folders

	If you are curious about Smile
	The history of Smile
	The philosophy of Smile
	Why Smile is free

	III Appendices
	Satimage regular expressions
	Overview
	Defining a search pattern
	Metacharacters and ``escape'' character
	Anchors
	Character classes
	Operators
	Flags

	Defining a replace pattern

	Portability and raw codes
	What portability is about
	Referring to applications by creator code
	Why to use raw codes
	How to get the raw codes

	The components for custom dialogs
	Push Button
	Static Text Box
	Editable Text Box
	Password Text Box
	Popup Menu Button
	Slider
	Little Arrows
	Radio Button
	Check Box
	Time Clock
	Date Clock
	Progress Indicator
	Chasing Arrows
	Visual Separator
	Disclosure Triangle
	PDF Holder
	Icon Control
	Image Well
	Bevel Button
	List Box
	Menu Group Box
	Group Box
	Tabs Holder

	The dictionary of Smile
	Smile
	Misc
	Satimage utilities
	Smile drawings Suite
	SmileLab Suite

	The dictionary of the Satimage osax
	Satimage text Additions
	Satimage files Additions
	Satimage utilities Suite
	Resource Suite
	Math

	Built-in routines
	Handlers which display text
	Handlers which sort lists
	Miscellaneous helpers
	Handlers which open files
	Handlers which help manipulating Smile objects

	Reference of the PDF commands
	Overview
	Graphic state
	Handling States
	Stroke and Fill Settings
	Applying transformations

	Paths
	Operations on paths
	Building paths

	Text
	Text styles
	Drawing Text

	2D geometry

	GeomLib, a graphical library for 2D geometry
	Text Utilities
	Marking
	Marking Angles
	Marking Points
	Arrows

	Basic Geometry
	Basic Geometric Figures

