Satimage 戻る| 次へ
1-dとN次元の高速フーリエ変換
ホームページ > 情報センター > Onlineドキュメンテーション > Data想像>科学的環境 > Smileのmaths > 1-dの、そして、N次元のFFT ツ?/長さ>
  • 本当のアレイの1-dフーリエ変換を計算するために、 fft1dコマンドの縮約形を使用します。
    fft1d Normalized高速フーリエ変換。
    本物の勢ぞろい、またはaが本物の2つの勢ぞろいについて実数部、虚数部を記載します。
    []の論理演算子--本当であるなら虚偽でデフォルトとしてください、逆さの高速フーリエ変換
    結果: アレイは本当でそうします--実数部、結果として起こる高速フーリエ変換の虚数部。

    fft1dはあなたに 実数の勢ぞろいか 複素数の勢ぞろいのためのフーリエ変換を計算させることができます。 後者の場合では、 本当の2つのアレイのリストとして実数部と虚数部を提供してください。

  • ベクトルの一般的で、分類されて、N次元のフーリエ変換を計算するために、 fft1dコマンドの高度なフォームを使用します。
    司令官が連結する fft1dは分類されてn次元の高速フーリエ変換でそうします。
    本物の勢ぞろい、またはaが本物の2つの勢ぞろいについて実数部、虚数部を記載します。
    []の論理演算子--本当であるなら虚偽でデフォルトとしてください、逆さの高速フーリエ変換
    [ロット]整数--変えるベクトルの数
    [ベクトルサイズ]整数--それぞれのベクトルの要素の数
    [ベクトルステップ]整数--ベクトルにおける要素の間の距離
    [ベクトルは相殺されました]整数--ベクトルの間の距離
    結果: アレイは本当でそうします--実数部、結果として起こる高速フーリエ変換の虚数部。
  • アレイのサイズが何であっても、 fft1dの実行時間はオーダーN.Log(N)のものです。 しかしながら、ベクトルのサイズがわずかな素数の強国の製品であるときに、 fft1dは、より速いです。
輸入スクリプト

createarray144範囲にxを設定してください。パイ、パイ
randomarray144範囲にyを設定してください。{-0.75, 1}
runningsum yにysを設定してください。
QuickCurveにcを設定してください。(x、y、0)
cの容器にvを設定してください。
fft1d ysにKr、kiを設定してください。
QuickCurve(x、Kr、v)
QuickCurve(x、ki、v)
vの限界を設定します。パイ、パイ、パイ、パイ
vを描いてください。
Copyrightツゥ2005パリ、Satimage